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Abstract

The resonalyser method is a material identification technique which is based on the measurement of resonance frequencies of freely
suspended rectangular test plates, combined with numerical simulations. By adjusting the ratio of the width to the length of the test plate,
the resonance frequencies can be made very sensitive for small variations of Poisson’s ratio. This study examines a fabric-reinforced com-
posite material with a very small value of Poisson’s ratio. The material on which the experiments are performed is a carbon fabric-rein-
forced polyphenylene sulphide. The accurateness of the determined values of the in-plane elastic properties of the test plates is validated
with static tensile tests. First, the four orthotropic elastic properties, Young’s moduli E11 and E22, the in-plane shear modulus G12 and
Poisson’s ratio m12, are identified using the resonalyser technique. Next, the obtained values for Young’s moduli and Poisson’s ratio are
validated with static uni-axial tests.

It can be concluded that the results derived from both measurement methods corresponded very well.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

When designing constructions with any type of material,
the accurate knowledge of the elastic properties of the used
materials is very important. Often, the choice of material
and type of construction depend on it. Therefore, a large
number of experiments are available to determine the var-
ious mechanical properties.

In this article, results from the so-called ‘‘resonalyser
technique’’ [1,2] are compared with results obtained with
simple uni-axial static tests for the determination of
Young’s modulus and Poisson’s ratio for a material with
a quasi-zero Poisson’s ratio. The resonalyser method is a
material identification technique which is based on the
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measurement of resonance frequencies of freely suspended
rectangular test plates, combined with numerical simula-
tions. It is an inverse method that identifies the material
parameters in such a way that the numerically computed
resonance frequencies match the experimental values. The
results obtained with this method are then compared with
the results from a standard tensile test according to the
ASTM standard D3039-93 (standard test method for ten-
sile properties of polymer matrix composite materials).

In the first paragraphs the theoretical background and
the principle of the resonalyser is discussed. Then, the used
material and test setups are presented. This is followed by
the static tensile testing, in order to compare the results
obtained with both methods. Finally, some conclusions
are drawn concerning the correspondence between the val-
ues derived from both methods and on the effect of the
quasi-zero Poisson’s ratio on the expected mode shapes
in the resonalyser technique.
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Fig. 1. Comparison between experimentally measured and computed
resonance frequencies of the same test plate.
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2. Theoretical background of the resonalyser

The elastic behaviour of materials having orthotropic
symmetry axes in a state of plane stress can be described
by the following relation between strains and stresses:
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In this expression, 1 and 2 are the main material axes of the
orthotropic material, (e11, e22,c12) represents the strain
components, (r11,r22,s12) the stress components, E11 and
E22 the Young’s moduli in the first and second main mate-
rial direction, m12 and m21 the Poisson’s ratios and G12 is the
shear modulus in the (1,2)-plane. If linear material behav-
iour is assumed, the elastic properties E11, E22, m12, m21 and
G12 are also called the ‘engineering constants’. Since the
compliance matrix in Eq. (1) is symmetric, only four inde-
pendent engineering constants occur: E11, E22, m12 and G12.

The resonalyser procedure is a mixed numerical/experi-
mental method that aims to identify the engineering con-
stants of orthotropic materials using measured resonant
frequencies of freely suspended rectangular specimens.
For the identification of the four orthotropic material con-
stants, it is necessary to measure the first three resonant fre-
quencies of a rectangular plate and the first resonant
frequency of two beams, one cut along the longitudinal
direction and the other cut along the transversal direction
of the test plate.

2.1. Identification of the Young’s modulus by measuring the
resonant frequency of a test beam

The first resonant frequency of a test beam with free
boundary conditions is associated to a bending mode
deformation. From the first resonance it is possible to cal-
culate the Young’s modulus E of the material in the longi-
tudinal direction of the beam using the formula [3–6]:

E ¼ 0:946
qf 2L4

t2
½MPa� ð2Þ

where, q: specific mass [kg/M3]; f: measured resonant fre-
quency [Hz]; t: thickness of the beam [mm]; L: length of
the beam [mm].

This formula is only valid for sufficiently thin beams.
This requires for composite materials a ratio L/t greater
than 50.

2.2. Identification of the orthotropic stiffness properties by

measuring the resonant frequencies of a test plate

The identification of the orthotropic stiffness properties
is done by simulation of the rectangular test plate using a
numerical model on the computer. The numerical model
allows the calculation of the resonant frequencies on the
condition that the stiffness properties, the dimensions and
the mass of the plate are known. The basic principle of
the resonalyser is to compare measured frequencies of the
test plate with computed frequencies using a numerical
finite element model of the same test plate (Fig. 1). The
engineering constants in the numerical model are consid-
ered as unknown material parameters. Starting from an ini-
tial guess, the engineering constants are iteratively updated
till a series of numerically computed resonance frequencies
match the experimentally measured frequencies.

Such an inverse procedure can only yield good results if
the numerical model is controllable and if the elastic prop-
erties can be observed through the measured data [7–9].
This requires that in the selected series of frequencies at
least one of the frequencies varies significantly for varia-
tions of each of the elastic properties. It can be shown
[10,11] that this requirement is fulfilled if the ratio a/b of
the length and width of the test plate equals approximately

to a
b ¼

ffiffiffiffiffi
E11

E22

q
. A plate with such a ratio is called a ‘Poisson

test plate’ [11]. A Poisson test plate shows a predictable
sequence of mode shapes for the first 3 resonances: a tor-
sional, an anticlastic and a synclastic (Fig. 2). The ancti-
clastic mode is also known as the saddle mode and the
synclastic is known as the breathing mode.

The name ‘Poisson test plate’ has been chosen based on
the observation that the frequencies of the anticlastic and
synclastic mode shapes are particularly sensitive for
changes of the Poisson’s ratio of the plate material. A
material with a (hypothetical) zero value for Poisson’s ratio
would make the frequencies of both modes coincide, which
means that the synclastic and anticlastic modes become
pure bending modes in respectively the 1 and the 2-direc-
tion. The values E11 and E22 necessary to compute the plate
sizes a and b can be found by cutting two test beams, one
along the first principal material direction and a second
along the second principal direction. By measuring the first
resonance frequencies of the freely suspended test beams,
the values of E11 and E22 can be computed using formula
(2). The obtained values of E11 and E22 are also used as ini-
tial values for the resonalyser procedure. Good initial val-
ues for the other elastic constants G12 and m12 can be
obtained with empirical formulas [11]. The determination



Fig. 2. The first three mode shapes of a Poisson test plate.
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of these values will be discussed in Section 2.3. Starting
with these initial values, the engineering constants in a
finite element model of the test plate are iteratively updated
till the three first computed resonance frequencies match
the measured frequencies associated with the mode shapes
shown in Fig. 2. In the finite element model, the plate
dimensions and mass are considered as known and fixed
values. The four engineering constants are stored in a
parameter column p. The updating of p is realised by mini-
mising a cost function C(p):

CðpÞ ¼ ðmr � yrðpÞÞ � W m
rs � ðms � ysðpÞÞ

þ ðpð0Þr � prÞ � W m
rs � ðpð0Þs � psÞ ð3Þ

In Eq. (3) C(p) is a RNP ! R cost function yielding a
scalar value, p is a (NP · 1) column containing the
NP = 4 material parameters E11, E22, m12 and G12, {p(0)}
contains the initial estimates for the material parameters,
{y} is a (NP · 1) output column containing the NM = 3
computed frequencies using parameter values {p}, {m}
contains the (NP · 1) measured frequencies, [W (m)] is a
(NP · NM) weighing matrix applied on the difference
between the measured column and the output column,
and [W (p)] is a (NP · NP) weighing matrix for the differ-
ence between the initial parameter column {p(0)} and the
parameter column {p}.

The cost function C(p) has a minimal value for the
optimal parameter values column {p(opt)}. The choice of
the weighting matrices is discussed, among others, in
[7,12,13] The updating of the initial parameter column
toward {p(opt)} by minimization of the cost function is
given by the following recurrence formula in iteration step
(j + 1):

pðjþ1Þ
k ¼ pðjÞk þ ½W

p
km þ Sj

rk � W ðmÞ
rs � Sj

sm�
�1 � ðSj

rm � W ðmÞ
rs

� ðms � yðjÞs Þ þ W ðpÞ
ms � ðpð0Þs � pðjÞs ÞÞ ð4Þ

In Eq. (4) Sj is the sensitivity matrix containing the partial
derivatives of the output column to the parameter column.

The measurement of the three resonance frequencies of
the test plate can be performed simple, fast and accurate
with a PC equipped with a data acquisition card. An accel-
erometer is fixed on the freely suspended test plate which is
impacted with a small hammer. The generated time domain
signal in the accelerometer is digitised by the data acquisi-
tion card and stored in the computer’s memory. Next the
signal is transformed by a Fast Fourier Transformation
[14] to the frequency domain in which the resonance fre-
quencies occur as sharp peaks and can easily be identified.
The numerical model of the test plate is based on the Love–
Kirchhoff theory for thin plates. The model is sufficiently
accurate if the length/thickness ratio of the plate exceeds
a factor of about 50 [15]. Very accurate eight order polyno-
mial Lagrange functions are taken as the shape functions in
the used numerical finite element model of the test plate
[11]. The stiffness matrix of the test plate is evaluated in
each iteration cycle using standard finite element proce-
dures with the values of the parameter column p at that
moment. The computed resonance frequencies are
obtained by the solution of a generalised eigenvalue prob-
lem composed with the constant mass matrix and the eval-
uated stiffness matrix. The iteration procedure using Eq. (4)
ends if convergence of p is reached. The value of the engi-
neering constants in p in the last iteration cycle is consid-
ered as the result of the resonalyser procedure.

2.3. Determination of the initial values of the orthotropic

stiffness properties used by the numerical model

The measurement of the resonant frequencies of two test
beams (which was necessary to establish the correct test
plate ratio), also supplies us with good initial values of
E11 and E22, via the formula (2).

For the determination of the initial values of the Poisson
ratio and the shear modulus G12, we need a further study of
the mode shapes of the rectangular plate. As mentioned
above (Fig. 2), the first mode of the test plate is a torsion
mode. The magnitude of the eigenvalue belonging to this
mode is almost exclusively determined by the shear modu-
lus G12, and can be approximated by the formula [11]:

kT ¼ 41:75
G12t3

Mab
ð5Þ

where k = (2pfT)2: eigenvalue corresponding to the torsion
mode [Hz2]; t: thickness of the test plate [mm]; fT: resonant
frequency corresponding to the torsion mode [Hz]; b: width
of the test plate [mm]; a: length of the test plate [mm]; M:
mass of the test plate [kg].

The eigenvalues belonging to the saddle and breathing
modes coincide when the Poisson ratio is equal to zero.
A value of Poisson’s ratio different from zero makes the
eigenvalue of the saddle mode decrease and the eigenvalue
of the breathing mode increase. So, the bigger the Poisson’s
ratio, the bigger becomes the difference between the eigen-
values of the saddle and breathing modes. Using an empir-
ical formula it is possible to express the relation between
the Poisson’s ratio and the two eigenvalues [10,11]:

v12 ¼ C1

kA � kZ

kA þ kZ

ð6Þ



Fig. 3. Dimensions of the used tensile coupon, equipped with tabs of
[±45�]2s glass fibre epoxy.
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where kA = (2pfA)2: eigenvalue corresponding to the
breathing mode [Hz2]; kZ = (2pfZ)2: eigenvalue correspond-
ing to the saddle mode [Hz2]; fA: resonant frequency corre-
sponding to the breathing mode [Hz]; fZ: resonant
frequency corresponding to the saddle mode [Hz]; C1: a
constant [–].

3. Material and experimental setup

3.1. Material

The material under study was a carbon fibre-reinforced
polyphenylene sulphide (PPS), called CETEX. This mate-
rial is supplied by Ten Cate. The fibre type is the carbon
fibre T300J 3 K and the weaving pattern is a 5-harness
satin weave with a mass per surface unit of 286 g/m2.
The 5-harness satin weave is a fabric with high strength
in both directions and excellent bending properties.

The carbon PPS plates were hot pressed and two stack-
ing sequences were used for this study, namely a [#0�]4s and
a [#0�/#90�]2s were (#0�) represents one layer of fabric.

The thickness of each layer is about 0.3 mm, the density
of the lamina is 1555 kg/m3 and the fibre volume fraction is
50%.

For the resonalyser method, two different test plates
were used:

Plate 1: [#0�]4s

The warp direction of all the 8 layers coincides (the weft
direction is perpendicular to the warp). One plate and 8
beams (4 along the warp and 4 along the weft direction)
were cut out of the master plate.
Plate 2: [#0�/#90�]2s

The warp direction of each layer is 0� and 90� alterna-
tively, starting with the warp direction at the upper
Table 1
Geometry, mass and specific mass of the test specimens

Specimen Length [m] Width [m]

Plate [#0�]8 0.149 0.14904

Plate [#0�/#90�]2s 0.14934 0.14993

Beam 1: [#0�]8 0.1488 0.02153
Beam 2: [#0�]8 0.1482 0.0222
Beam 3: [#0�]8 0.14854 0.0234
Beam 4: [#0�]8 0.14904 0.0235
Beam 5: [#90�]8 0.14823 0.02365
Beam 6: [#90�]8 0.14875 0.02288
Beam 7: [#90�]8 0.14848 0.02405
Beam 8: [#90�]8 0.14809 0.02346

Beam 9: [#0�/#90�]2s 0.14948 0.02207
Beam 10: [#0�/#90�]2s 0.14936 0.02409
Beam 11: [#0�/#90�]2s 0.14926 0.02315
Beam 12: [#0�/#90�]2s 0.14915 0.02341
Beam 13: [#0�/#90�]2s 0.14913 0.02320
Beam 14: [#0�/#90�]2s 0.14926 0.02355
Beam 15: [#0�/#90�]2s 0.14941 0.023
Beam 16: [#0�/#90�]2s 0.149 0.02349
layer. Again, one test plate and 8 test beams (4 along
the warp and 4 along the weft direction) were cut.

The exact geometry, mass and specific mass of each test
specimen are given in Table 1.

For the static testing, only the [#0�]4s was used. The test
coupons were sawn with a water-cooled diamond saw, the
dimensions of the coupons are shown in Fig. 3. [±45�]2s

glass fibre epoxy tabs were used in order to avoid damage
of the specimens by the grips of the tensile machine.

An example of an instrumented tensile coupon is
depicted in Fig. 4.
3.2. Experimental setup for the resonalyser method

The experimental setup includes a suspension frame for
the rectangular test plate, a loudspeaker for the excitation,
a laser velocity vibrometer, a signal conditioning unit, a
data acquisition unit and a personal computer (see Fig. 5).

The test plate is suspended on the frame with thin
strings. This configuration simulates completely free
Thickness [m] Mass [kg] Specific mass [kg/m3]

0.00241 0.08350 1560.200

0.00241 0.08314 1543.939

0.00235 0.01189 1579.309
0.00241 0.01238 1561.358
0.00237 0.01290 1565.965
0.00239 0.01319 1575.710
0.00242 0.01305 1538.253
0.00236 0.01269 1579.926
0.00236 0.01329 1576.994
0.00238 0.01308 1581.893

0.00241 0.01237 1555.848
0.00240 0.01340 1551.752
0.00242 0.01283 1534.323
0.00243 0.01304 1536.904
0.00239 0.01286 1555.214
0.00239 0.01297 1543.859
0.00236 0.01271 1567.206
0.00239 0.01300 1554.090



Fig. 4. An example of a specimen instrumented with the longitudinal and
transverse strain gauge.

Fig. 5. The resonalyser setup.
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boundary conditions. The test plate is excited by a periodic
chirp signal with a desired bandwidth through a loud-
speaker. As a result of this excitation, the test plate will
start to vibrate on its resonance frequencies inside the fre-
quency band of the signal. The vibration amplitude of the
plate as a function of time is picked up by the laser vibrom-
eter and stored in the memory of PC by a data acquisition
system. The resonance frequencies of the plate in the band
of interest are detected by taking the Fast Fourier trans-
form of the signal.
Table 2
Measured resonant frequencies using accelerometer and identified material pr

Specimen Resonant frequency [Hz] E11

Plate [#0�]8 201.96 61.8
625.91
687.02

Plate [#0�/#90�]2s 193.49 56.9
636.87
660.34

Beam 1: [#0�]8 662.08 58.1
Beam 2: [#0�]8 666.15 54.4
Beam 3: [#0�]8 666.52 57.0
Beam 4: [#0�]8 664.42 56.8
Beam 5: [#90�]8 616.05 –
Beam 6: [#90�]8 607.06 –
Beam 7: [#90�]8 612.11 –
Beam 8: [#90�]8 617.34 –

Beam 9: [#0�/#90�]2s 641.11 52.0
Beam 10: [#0�/#90�]2s 643.09 52.4
Beam 11: [#0�/#90�]2s 639.38 50.2
Beam 12: [#0�/#90�]2s 644.22 50.5
Beam 13: [#0�/#90�]2s 637.92 –
Beam 14: [#0�/#90�]2s 634.03 –
Beam 15: [#0�/#90�]2s 631.29 –
Beam 16: [#0�/#90�]2s 634.52 –
3.3. Experimental setup for the static tests

All tensile tests were performed on a servo-hydraulic
INSTRON 1342 tensile testing machine with a FastTrack
8800 digital controller and a load cell of ±100 kN. The
tests were displacement-controlled with a speed of 2 mm/
min.

The strain gauges were mounted in the 0� and 90� direc-
tions to measure longitudinal and transverse strain. Pois-
son’s ratio is then given by

v12 ¼ �
e22

e11

ð7Þ

For the registration of the data, a combination of a
National Instruments DAQpad 6052E for fireWire, IEEE
1394 and the SCB-68 pin shielded connecter were used.
The load, displacement and strain, given by the FastTrack
controller, as well as the extra signals from strain gauges
were sampled on the same time basis. The latter is neces-
sary to be able to calculate Poisson’s ratio.
4. Results

4.1. Identification of the material properties using the

resonalyser procedure

The first three resonant frequencies of the plates, as well
as the first resonance of each beam were measured with the
setup. Next the material properties in the numerical model
in the resonalyser procedure were tuned iteratively, as
described in Section 2, till the computed frequencies match
the measured frequencies as closely as possible. The values
operties via the resonalyser technique

[GPa] E22 [GPa] G12 [GPa] m12 [–]

50.8 4.82 0.023

56.7 4.48 0.040

4 – – –
4 – – –
4 – – –
4 – – –

45.53 – –
48.42 – –
48.78 – –
48.42 – –

0 – – –
5 – – –
9 – – –
7 – – –

51.84 – –
51.01 – –
52.87 – –
51.07 – –



Fig. 6. Bending mode of a typical test beam.

Fig. 7. Mode shapes of plate 1: [#0�]4s corresponding to the first three resonant frequencies, measured with the laser velocity vibrometer.

Fig. 8. Mode shapes of plate 2: [#0�/#90�]2s corresponding to the first three resonant frequencies, measured with the laser velocity vibrometer.

Fig. 9. e11 and e22 as a function of pseudo-time for both specimens.
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of the four orthotropic stiffness properties in the last itera-
tion cycle of this procedure were identified, and the final
results are listed in Table 2.

The values of E11 and E22 measured from the resonance
frequencies of the beam specimens using formula (2) is also
listed in Table 2.

4.2. Visualisation of the mode shapes

The mode shapes of a typical test beam and the mode
shapes of both test plates are visualised using a laser
vibrometer.

The mode shapes corresponding to the measured reso-
nant frequencies for the beam is given in Fig. 6 and those
Fig. 10. r11 as a function of

Fig. 11. m12 as a function of
for both plates are given in Figs. 7 and 8. For the latter,
it can be noticed that the synclastic and anticlastic mode
(second and third mode) are very much alike and are prac-
tically bending modes.

4.3. Static tensile test results

Fig. 9 gives the evolution of both longitudinal and trans-
verse strains for both the [#0�]4s specimens G4 and G7 as a
function of pseudo-time, where 0 corresponds with the
start of the experiment and 1 corresponds with failure of
the specimen. It can be noticed that the transverse strains
remain very small. At failure they reach a value of
�0.00039 for G4 and �0.00030 for G7. The ultimate
e11 for both specimens.

e11 for both specimens.
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longitudinal strains are 0.0112 and 0.0102, respectively, for
G4 and G7.

In Fig. 10, the evolution of the stress r11 as a function of
the strain e11 is given. It may be concluded that this mate-
rial has a linear behaviour up to failure. The failure stresses
are 643.5 MPa for G4 and 594.3 MPa for G7. Young’s
modulus can also be derived from these experiments, a
value of 57.5 GPa for G4 and 58.4 GPa for G7 are found.
These values show good agreement with the values in Table
2.

Finally, Fig. 11 shows the evolution of Poisson’s ratio as
a function of the longitudinal strain. An average value of
0.049 and 0.053 is found for G4, respectively, G7. This
value also shows good correspondence with the values
found with the resonalyser technique (Table 2).

It must be remarked that the value of m12 is very low,
considering the fact that the fibre-reinforcement is a fabric.
Normally, values between 0.2 and 0.4 are found [16,17].
However, a similar low value was found by Hofstee et al.
[18] for a similar material.

It may also be noted that once the longitudinal strain
exceeds about 0.006, the ratio tends to decrease. At frac-
ture, m12 is only about 60% of its original value, namely
0.035 for G4 and 0.03 for G7. This decrease in the Pois-
son’s ratio may present the possibility to use m12 as a means
to characterize damage. However, further research and
experiments are necessary in order to prove this.

5. Conclusions

The resonalyser technique is well suited for the accurate
identification of the elastic properties of an orthotropic
composite material. The values determined with this
method show good correspondence with the values derived
from the static uni-axial tests. However, the advantage of
the resonalyser technique over the uni-axial test is the little
preparation time needed for the experiments, once the res-
onalyser setup is acquired, since the technique does not
require strain gauges, extensometers or end tabs.

The Poisson’s ratio of the plate [#0�]4s is very small. An
average value of 0.052 was found. For the resonalyser tech-
nique, this causes the second and third mode shapes to be
two bending mode shapes instead of saddle and breathing
mode shapes. The low m12 is also confirmed by the [#0�/
#90�]2s.

When considering the evolution of Poisson’s ratio, a
clearly decreasing trend is noticed. This should allow the
use of m12 as a way to characterize damage in the material.
However, further research on this matter is necessary.
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