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Currently, the interaction between free surface flow and an elastic structure is simulated with monolithic
codes which calculate the deformation of the structure and the liquid–gas flow simultaneously. In this work,
this interaction is calculated in a partitioned way with a separate flow solver and a separate structural solver
using the interface quasi-Newton algorithm with approximation for the inverse of the Jacobian from a least-
squares model (IQN-ILS). The interaction between an elastic beam and a sloshing liquid in a rolling tank is
calculated and the results agree well with experimental data. Subsequently, the impact of both a rigid
cylinder and a flexible composite cylinder on a water surface is simulated to assess the effect of slamming on
the components of certain wave-energy converters. The impact pressure on the bottom of the rigid cylinder
is nearly twice as high as on the flexible cylinder, which emphasizes the need for fluid–structure interaction
calculations in the design process of these wave-energy converters. For both the rolling tank simulations and
the impact simulations, grid refinement is performed and the IQN-ILS algorithm requires the same number of
iterations on each grid. The simulations on the coarse grid are also executed using Gauss-Seidel coupling
iterations with Aitken relaxation which requires significantly more coupling iterations per time step.
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1. Introduction

Over the past decade, the simulation of fluid–structure interaction
(FSI) has gained interest, resulting in numerous biomedical [1–3] and
engineering [4,5] applications. More recently, the level of complexity
of FSI simulations has increased by the addition of advanced models
such as free surface flow to the coupled problem [6–10]. Multiphase
flow can be highly unsteady because of waves and droplets. The
interaction between such an unsteady flow and a structure can change
abruptly due to impact of a structure on a free surface or a wave
hitting an already deforming structure. This strong time dependence
causes additional difficulties in FSI simulations.

Free surface flowhas since long fascinated scientists and engineers,
possibly due to the countless spectacular applications, and several
numerical methods have been devised. Most of these methods can be
categorized as interface-tracking, interface-capturing or particle
methods. Interface-tracking methods represent the liquid–gas inter-
face by means of a chain of grid nodes in 2D or a surface in 3D. These
grid nodes move at the same speed as the fluids over a static [11] or
deforming [12,13] fluid grid. Interface-capturing methods use a grid
which does not deform due to themotion of the fluid and some kind of
markerwhich is transportedwith the flow to determine onwhich side
of the liquid–gas interface a cell is located. The Volume-Of-Fluid (VOF)
method employs a marker variable to store the fraction of the cell that
is filled with a given phase [14,15] and the Level Set method indicates
the liquid–gas interface with the zero level of a smooth function [16].
The Particle Finite Element Method (PFEM) [17] and Smoothed
Particle Hydrodynamics (SPH) [18] are particle methods but also
latticemethods [19] fit in this category. Several benchmarks have been
established to compare and verify all these simulation techniques, for
example the well-known dam-break problem [20].

FSI and coupled problems in general can be simulated in either a
monolithic or a partitioned way. In the monolithic approach, the
equations of the subproblems are solved simultaneously, thereby
taking into account the interaction between the subproblems during
the solution process. This results in a large system of generally
nonlinear coupled equations which is often solved with Newton
iterations [21] with suitable preconditioning for the different blocks in
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Fig. 1. The fluid subdomain Ωf, the solid subdomain Ωs, their boundaries Γf and Γs and
the fluid–structure interface Γi.
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the resulting linear systems. In a partitioned simulation, however, the
equations of each subproblem are solved separately with a code that
has been developed specifically for that kind of equations [22]. A
coupling algorithm incorporates the interaction between the sub-
problems, often by performing iterations between the subproblems.
Algorithms without coupling iterations [23] and Gauss-Seidel itera-
tions [1,24,25] are mostly unstable in the case of strong interaction
between the flow and the structure. However, quasi-Newton itera-
tions [26,27] or Newton-Krylov techniques [28,29] can be used to
solve such FSI problems in a partitioned way, even with black-box
solvers. The main advantage of monolithic simulations is the stability
of the solution process, whereas the most important benefit of the
partitioned approach is that existing, mature and optimized codes for
the subproblems can be reused.

Several simulations of FSI with a free surface have previously been
performed with considerable attention for experimental validation.
Walhorn et al. [6] use a space-time finite element discretization and the
Level Set method to simulate a rising bubble and dam-break with an
elastic obstacle. Antoci et al. [7] work with SPH to calculate a variation of
the dam-break problem in which the dam does not disappear but
becomes flexible at the bottom. Idelsohn et al. [8,9] employ PFEM to
simulate various cases, amongwhichdam-breakwith aflexible obstacle, a
solidobject impactingandfloatingonwaterand the interactionbetweena
flexible structure and the sloshingflow in a rolling tank. Potapov et al. [10]
simulate fluid–structure interaction with tearing structures using SPH.

However, all results mentioned in the previous paragraph have
been obtained using monolithic techniques. In this paper, it is
demonstrated how partitioned simulation of the interaction between
an elastic structure and free surface flow can be performed. A finite
volume flow code which solves the Navier-Stokes equations in
arbitrary Lagrangian-Eulerian (ALE) formulation with a VOF model
for the free surface is coupled with a finite element structural code by
means of interface quasi-Newton iterations using an approximation
for the inverse of the Jacobian from a least-squares model (IQN-ILS)
[27]. This coupling technique treats both the flow solver and the
structural solver as a black box and the algorithm will be explained in
detail below. The performance (measured as the average number of
coupling iterations per time step) of the IQN-ILS coupling algorithm is
compared with another partitioned algorithm, namely Gauss-Seidel
iterations with Aitken relaxation [30,31].

An existing case, namely the sloshing flow in a rolling tank with a
flexible obstacle [9], is simulated and the results are compared with
experiments to demonstrate that the partitioned approach results in the
correct solution. Subsequently, the impact of both a rigid and a flexible
composite cylinderonawater surface is simulated toaccelerate thedesign
process of a particular component for floating wave-energy converters.

Section 2 describes the governing equations for the flow and the
structure and their discretization. The IQN-ILS coupling algorithm is
explained in Section 3, followed by a brief description of Gauss-Seidel
iterations with Aitken relaxation in Section 4. The simulations of the
rolling tank and falling cylinder are presented in Section 5 and
Section 6, respectively, and the conclusions are listed in Section 7.

2. Governing equations

In this section, the governing equations for the fluid flow and the
structure and their discretization are outlined, followed by the
equilibriumconditionson thefluid–structure interface. The subdomains
are indicated as Ωf and Ωs and their boundaries as Γf and Γs, with the
subscript f denoting fluid and s solid. The fluid–structure interface
Γi=Γf∩Γs is the common boundary of these subdomains (Fig. 1).

2.1. Flow equations

The liquid and the gas in the free surface flow are both considered
incompressible and mutually immiscible. This multiphase flow is
modeled with the VOF technique, which introduces a scalar volume
fraction αf throughout the fluid domain to distinguish the liquid from
the gas [14,15]. A region is filled with liquid only if the volume fraction
is one and with gas only if the volume fraction is zero. The fluid
properties such as the fluid density ρf are written as a function of the
volume fraction

ρf = αf ρl + ð1−αf Þρg ð1Þ

with ρl and ρg the density of the liquid and the gas, respectively.
Similarly for the fluid viscosity μf.

The unsteady, isothermal flow of the liquid and the gas is governed
by the conservation of mass and a single set of Navier-Stokes equa-
tions, given by

∂ρf
∂t + ∇⋅ ρf vf

� �
= 0 ð2aÞ

∂ρf vf
∂t + ∇⋅ ρf vf vf

� �
−∇⋅τf = f f ð2bÞ

for xaΩf. The flow velocity is denoted by vf and the time by t. ff
represents the body forces per unit of volume on the fluid. In this
paper, gravity is the only body force so ff=−ρf g1y with g=9.81m/s2

the gravitational acceleration and 1y the unit vector in the vertical
direction as indicated in Fig. 1. For the Newtonian fluids under
consideration, the stress tensor is defined as

τf = −pI + 2μγ ð3aÞ

with the rate of strain tensor γ given by

γ =
1
2

∇vf + ð∇vf ÞT
h i

: ð3bÞ

For two incompressible fluid phases, the mass conservation of the
phases results in an equation for the volume fraction, namely

∂αf

∂t + ∇⋅ αf vf
� �

= 0: ð4Þ

There is nomass transfer between the liquid and thegas. Also, surface
tension is not taken into account because both the Reynolds number

Re =
ρlvlL
μl

ð5aÞ

and the Weber number

We =
ρlvlL
σlg

ð5bÞ

aremuch larger than one, withσlg being the surface tension coefficient
between the liquid and the gas and L the appropriate length scale.

The flow equations are discretized in space on a grid with triangular
and rectangular cells using the finite volumemethod. Scalars are stored
in the cell centres and a power law is used to obtain momentum
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variables at the faces. Gradients at the cell centres are calculated from
the face values using the Green-Gauss theorem. The face values for the
gradient calculations are the arithmetic average of the node values,
which are in turn theweighted average of the values in the cells around
the node. The pressure interpolation at the faces is performed with a
staggered grid approach similar to the one described by Patankar [32].
Eqs. (2) are solved using the Pressure-Implicit with Splitting of
Operators (PISO) scheme with skewness and neighbour correction.
Algebraic multigrid is employed to accelerate the convergence.

The grid of the fluid domain is deforming, driven by the defor-
mation of the fluid–structure interface. Smoothing with fictitious
springs between the grid nodes is applied for deformations during the
time step. Cells which have either become too skewed or which fall
outside the range of desired cell sizes are eliminated once in each time
step. The implicit backward Euler time discretization of Eqs. (2) in ALE
formulation is first order accurate on a moving grid.

Eq. (4) for the volume fraction is solved with first order explicit
time discretization but the time step for this equation is only a fraction
of the time step of the FSI calculation such that the Courant number
does not exceed 0.25 near the liquid–gas interface. However, the
volume fraction is recalculated after each grid deformation and the
convective flux coefficients are updated based on the new volume
fractions. The liquid–gas interface is reconstructed with a piecewise-
linear approach for an accurate calculation of the fluxes through the
faces near the liquid–gas interface [33].

2.2. Structural equations

The deformation ds of the structure is determined by the conser-
vation of momentum

ρs
∂2ds

∂t2
−∇⋅σs = f s ð6Þ

for xaΩswith ρs the structural density and fs=−ρsg1y the body force
per unit volume on the structure. The relation between the stress
tensor σs and the strain tensor

�s =
1
2

∇ds + ∇dsð ÞT
h i

ð7Þ

is given by the constitutive equation of the material, in this case a
linear-elastic material law.

σs = C : �s: ð8Þ

The value of C depends on the material and will therefore be
different for the test cases presented in Section 5 and Section 6, where
this and other case-dependent assumptions will be documented.

The structure is discretized with finite elements. Geometric
nonlinearity is taken into account during the solution process and the
stress on the fluid–structure interface follows the rotation of the
structure during the time step. Unconditionally stable implicit Hilber-
Hughes-Taylor time integration [34] is used with a small numerical
damping parameter αs=−0.05.

2.3. Equilibrium conditions

The equilibrium conditions on the fluid–structure interface are the
kinematic condition

vf =
∂ds

∂t ð9Þ

and the dynamic condition

nf ⋅σf = −ns⋅σs ð10Þ
for xaΓi with d the displacement, σ the stress tensor and n the unit
normal vector that points outwards from the domainΩ. The Dirichlet-
Neumann formulation of the FSI problem is employed, which means
that the flow equations are solved for a given velocity of the fluid–
structure interface, whereas a stress is imposed on the fluid–structure
boundary of the solid domain. The time discretization converts Eq. (9)
into equality of the displacements on the fluid–structure interface.
Appropriate conditions such as no-slip walls and constant pressure
boundaries are imposed on Γf nΓi and displacements or rotations are
applied on ΓsnΓi.

As the fluid and solid have a different discretization on the fluid–
structure interface, an interpolation has to be performed. To transfer
the displacement from the solid side to the fluid side of the interface,
the fluid grid nodes are projected orthogonally on the boundary
of the structural grid, after which the displacement at the location of
this projection is calculated with linear interpolation of the values
at the two nearest structural nodes. The stresses on the solid
side of the fluid–structure interface are obtained in an analogous
way from the stresses on the fluid side by orthogonal projection of
the load integration points on the fluid grid followed by linear
interpolation. Although other interpolation techniques exist [35,36],
this simple approach is chosen because it does not require any
information about the connectivity or discretization in the solvers,
which is consistent with the black-box approach of the IQN-ILS
coupling algorithm and the Gauss-Seidel iterations with Aitken
relaxation. The interpolation will be hidden in the following sections
to avoid additional notation.

3. Interface quasi-Newton coupling algorithm

In this section, the flow solver and the structural solver are
redefined as functions with the degrees-of-freedom on the interface
as input and output. These functions will subsequently be used in the
explanation of the coupling algorithms. In the remainder of this paper,
all values and functions are at the new time level n+1, unless
indicated otherwise with a superscript n. A right superscript k
indicates the coupling iteration within time step n+1 and a subscript
denotes the element in a vector. Capital letters denote matrices, bold
lower case letters and lower case letters represent vectors and scalars,
respectively.

The displacement degrees-of-freedom of all nodes on the fluid–
structure interface are grouped in a vector daℝu and the normal
stress components σ⋅n on all faces of the interface are gathered in a
vector taℝw. The function

t = FðdÞ ð11Þ

is referred to as the flow solver and it concisely represents several
operations. The displacement of the fluid–structure interface is passed
on to the flow code and the grid of the fluid domain adjacent to the
interface is adapted accordingly. Subsequently, the grid velocity is
calculated and the flow equations are solved for the fluid state in the
entire fluid domain, which also results in a stress distribution on the
interface.

The structural solver is represented by the function

d = SðtÞ: ð12Þ

This expression indicates that the stress distribution on the
interface is given to the structural code which then calculates the
displacement of the entire structure and thus also the new
displacement of the fluid–structure interface. It is important to notice
that F and S both solve a problem in a subdomain while their input
and output is limited to the fluid–structure interface. Operations on
d and t are therefore fast compared to evaluations of these functions.
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The equilibrium conditions in Section 2.3 have to be satisfied in
each time step of the FSI simulations so Eqs. (11) and (12) have to be
satisfied by the same vector d and t. Elimination of t results in a set of
equations for the displacement vector only

S ∘FðdÞ = d ð13Þ

which is subsequently reformulatedas anonlinear root-findingproblem
in the interface's displacement

rðdÞ = S∘FðdÞ−d = 0: ð14Þ

The dependence of r on d is further often omitted for clarity. This
nonlinear equation in d is solved with quasi-Newton iterations

d̂r
dd j

dk
Δdk = −rk ð15aÞ

dk+1 = dk + Δdk ð15bÞ

and a hat is used to indicate the approximation of the Jacobian.
This approximation is necessary because the exact Jacobian of r(d) is
unknown as the Jacobians of the black-box functions F and S are
unavailable. In each quasi-Newton iteration, the residual vector is
calculated as the output of the structural solver (d ̃k+1)minus the input
of the flow solver (dk)

rk = rðdkÞ = S ∘FðdkÞ−dk = d̃
k +1−dk

: ð16Þ

A tilde indicates that the displacement has been calculated by the
structural solver to distinguish it from the displacement given to the
flow solver. Since the displacement calculated by S is only an inter-
mediate value that is not used in the next coupling iteration, the tilde
is dropped once the displacement for the next iteration has been
calculated.

If the Jacobian dr/dd is approximated and quasi-Newton iterations
are performed, black-box solvers can be used. However, the linear
system Eq. (15a) with as dimension the number of degrees-of-
freedom in the interface's displacement has to be solved in each quasi-
Newton iteration. Although the number of degrees-of-freedom in the
interface's displacement is generally smaller than the number of
degrees-of-freedom in the entire fluid and structure domain, the
Jacobian matrix dr/dd is usually dense. As a result, the solution of the
linear system Eq. (15a) corresponds to a significant computational
cost in large simulations, especially if a direct solver is used. It is
therefore more advantageous to approximate the inverse of the
Jacobian by applying the least-squares technique introduced by [26]
on a particular set of vectors, as will be explained below. This
technique can also be used to solve linear systems as demonstrated in
[37].

By approximating the inverse of the Jacobian, the quasi-Newton
iterations Eqs. (15a) and (15b) can be written as

dk+1 = dk +
d̂r
dd j

dk

� �−1

−rk
� �

: ð17Þ

It can be seen from Eq. (17) that the approximation for the
inverse of the Jacobian does not have to be created explicitly; a
procedure to calculate the product of this matrix with the vector −rk

is sufficient. The vector −rk is the difference between the desired
residual, i.e. 0, and the current residual rk and it is further denoted
as Δr=0−rk. The correction of the displacement in Eq. (17) is
rewritten as

Δdk =
ˆdr
dd

� �−1
−rk

� �
≈ d̂d

dr
−rk

� �
ð18Þ

with a slight abuse of notation. After substitution of the definition of
the residual r= d̃−d, this becomes

Δdk≈ d̂d
dr

−rk
� �

ð19aÞ

=
ˆ
dd̃
dr

−I

0
@

1
A −rk
� �

ð19bÞ

=
ˆ
dd̃
dr

−rk
� �

+ rk: ð19cÞ

Eq. (19c) indicates that the change Δd̃ of the structural solver's
output due to a given change of the residual Δr=−rk

Δd̃ =
ˆ
dd̃
dr

⋅ −rk
� �

ð20Þ

has to be approximated. This is done with data obtained during the
previous quasi-Newton iterations: Eq. (16) shows that the flow equa-
tions and structural equations are solved in quasi-Newton iteration k,
resulting in d̃

k+1
= S ∘FðdkÞ and the corresponding residual rk. To

predict how d̃ changeswhen r changes, these vectors are converted into
differences with respect to the first quasi-Newton iteration.

Δrk = rk−r0 ð21aÞ

Δd̃
k+1

= d̃
k+1−d̃

1
: ð21bÞ

Each quasi-Newton iteration generates an additional vectorΔr and
the corresponding vector Δd̃. These vectors are stored as the columns
of the matrices

Vk = Δrk−1 Δrk−2
… Δr1 Δr0

h i
ð22aÞ

and

Wk = Δ d̃
k

Δd̃
k−1

… Δd̃
2

Δd̃
1

h i
: ð22bÞ

The number of columns in Vk and Wk is indicated as v and it is
generally much smaller than the number of rows u. Nevertheless, in
simulations with a low number of degrees-of-freedom on the inter-
face, it is possible that the number of columns has to be limited to u by
discarding the rightmost columns.

The desired change of the residualΔr=0−rk is approximated as a
linear combination of the known Δri

Δr≈Vkck ð23Þ

with ckaℝv the coefficients of the decomposition. Because v≤u,
Eq. (23) is an overdetermined set of equations for the elements of ck

and hence the least-squares solution to this linear system is calculated.
Therefore, the so-called economy size QR-decomposition of Vk is
calculated using Householder transformations [38]

Vk = Q kRk ð24Þ
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with Qkaℝu×v an orthogonal matrix and Rkaℝv×v an upper triangular
matrix. The coefficient vector ck is then determined by solving the
triangular system

Rkck = Q kTΔr ð25Þ

using back substitution. If aΔr i vector is (almost) a linear combination
of otherΔr j vectors, one of the diagonal elements ofRkwill (almost) be
zero. Consequently, the equation corresponding to that row of Rk

cannot be solved during the back substitution. If a small diagonal
element is detected, the corresponding column in Vk is removed and
the QR-decomposition (Eq. (24)) and the solution of the triangular
system (Eq. (25)) are repeated until none of the diagonal elements is
too small. The tolerance for the detection of small diagonal elements
depends on how accurately the flow equations and structural equa-
tions are solved.

The Δ d̃ that corresponds to Δr≈Vkck can be approximated using
the same decomposition coefficients ck butwith respect toWk because
there is a one-to-one relation between the columns of Vk and Wk.
Consequently, the Δd̃ sought after in Eq. (20) is given by

Δd̃ = Wkck: ð26Þ

Substitution of Eq. (26) in Eq. (19c) yields

Δd = Wkck + rk: ð27Þ

The complete IQN-ILS technique is shown in the algorithm below.
Because thematrices Vk andWk have to contain at least one column, a
relaxation with factor ω (line 36) is performed in the second coupling
iteration of each time step. The quasi-Newton iterations start from the
initial guess

dn+1;0 =
5
2
dn−2dn−1 +

1
2
dn−2 ð28Þ

which is an extrapolation based on the previous time steps. Lower
order extrapolations are used for the first two time steps. The it-
erations in the time step have converged when ||rk||2≤ �o with �o the
convergence tolerance.

The relation between Δr and Δd is thus found by means of the Δd̃
values. One might try to relate the residual r directly to d instead of
to d̃, but this obviously will not work as the new input for S ∘F would
be a linear combination of the previous inputs. The only new
information in the input of S ∘F would originate from numerical
errors and consequently the coupling iterations would not converge.
More details can be found in [27].

Algorithm 1. IQN-ILS method

1: k=0

2: d̃
1
=S ∘F(d0)

3: r0= d̃
1
=d0

4: while ||rk||2 N �0 do

5: if k=0 then

6: dk+1=dk+ωrk

7: else

8: construct Vk and Wk as shown in Eqs. (21a) and (21b) and Eqs.
(22a) and (22b)

9: calculate QR-decomposition Vk=QkRk
10: solve Rkck=−QkT
rk

11: dk+1=dk+Wkck+rk

12: end if

13: k=k+1

14: d k̃+1=S ∘F(dk)

15: rk= d̃k+1−dk

16: end while

4. Gauss-Seidel iterations with Aitken relaxation

If the interaction between the fluid and the structure is strong
then Gauss-Seidel iterations between the flow solver and the struc-
tural solver diverge quickly without any relaxation. However, it is
difficult to determine a priori a value for the relaxation factor which
will result in fast convergence of the Gauss-Seidel iterations. Aitken
relaxation [30,31] signifies that a dynamically varying scalar
relaxation factor ωk is used for the Gauss-Seidel iterations within a
time step. The next displacement of the fluid–structure interface is
calculated as

dk +1 = dk + ωkrk ð29aÞ

= 1−ωk
� �

dk + ωk d̃
k +1 ð29bÞ

and consequently the next input for S ∘F is a linear combination of the
last output and the previous input. Moreover, the update of the
interface's position is in the direction of the residual vector, as opposed
to the update from the IQN-ILS method. The first relaxation in a time
step is executedwith the relaxation factor from the end of the previous
time step, but limited to ωmax, so ω0=sign(ωn)min(|ωn|,ωmax). The
value of ωk is obtained as

ωk = −ωk−1
rk−1

� �T
rk−rk−1

� �

rk−rk−1
� �T rk−rk−1

� � : ð30Þ

5. Rolling tank

The rolling tank cases presented by [9] are simulated to verify
the coupling code and both solvers. These cases consist of a
rectangular container partially filled with oil or water. This fluid
interacts with a flexible structure which is clamped to either the
top or bottom of the tank. The container rotates around the mid-
point of its bottom and a harmonic rolling motion is imposed by
an electric motor. Three different configurations are considered,
namely a standing beam immersed in shallow oil (Fig. 3), a standing
beam immersed in deep oil (Fig. 4) and a hanging beam above
shallow water (Fig. 5).

For this rolling tank, data from experiments and two-dimensional
monolithic PFEM calculations are available [9]. The experiments have
been performed with a transparent tank such that images could be
taken. The displacement of the tip of the beam in the rotating
reference frame of the tank has been calculated from these images
with a computer programme. Special attention has been paid to the
gaps between the flexible structure and the front and back of the tank
such that the experiments can be considered two-dimensional.
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Algorithm 2. Gauss-Seidel iterations with Aitken relaxation [30,31]

1: k=0

2: d̃=S ∘F(d0)

3: r0=d̃−d0

4: while ||rk||2 N �0 do

5: if k=0 then

6: ω0=sign(ωn)min(|ωn|,ωmax)

7: else

8: ωk = −ωk−1 ðrk−1ÞT ðrk−rk−1Þ
‖rk−rk−1‖2

9: end if

10: dk+1=dk+ωkrk

11: k=k+1

12: d̃k+1=S ∘F(dk)

13: rk= d̃k+1–dk

14: end while
Fig. 2. The coarse grid for the simulation of the rolling tank with (a) a standing beam in
shallow oil, (b) a standing beam in deep oil and (c) a hanging beam above shallow
water. A constant pressure is imposed on the red boundary, green is the fluid domain
and black represents a no-slip wall or the structural domain.
The tank is identical in the three configurations and it is 0.609 m
wide and 0.3445 m high. The shallow liquid level is 0.0574 m and the
deep liquid level is 0.1148 m. The elastic beam is 0.004 m thick and its
tip coincides with the still liquid–gas interface for both the standing
and the hanging beam. The top of the tank is a constant pressure
boundary while all other boundaries are zero-slip walls. Each con-
figuration has been simulated on three different grids, named coarse,
medium and fine. The coarse grid for all configurations is depicted in
Fig. 2 and the number of degrees-of-freedom in the fluid and solid
domain of the three grids is listed in Table 1. The number of degrees-
of-freedom in the fluid domain changes slightly during the simula-
tions due to remeshing.

The angular frequency of the rolling motion that is imposed on the
tank corresponds to the fundamental frequency of gravitational waves
in a liquid of limited depth [39], given by

ω =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πg
L

tanh
πH
L

r
ð31Þ

with H the height of the liquid and L the width of the tank. The period
of the rolling motion is thus 1.65 s for the shallow oil or water
configuration and 1.21 s for the deep oil configuration. For the
standing beam, the amplitude of the rolling motion is 4° and for the
hanging beam it is 2°. However, when the motor is started there is a
transition from the rest state to the harmonic motion due to inertia
and therefore the true time-angle curves [9] have been employed. The
time step is 0.0025 s for the standing beam and 0.0010 s for the
hanging beam, which corresponds to at least 500 time steps in one
period of the rolling motion.

The properties of the liquid, gas and solid can be found in Table 2
for the three configurations. The structure is discretized with rect-
angular 8-node continuum finite elements with reduced integration.
The plane stress approximation to the linear-elastic material law
Eq. (8) is used for the isotropic material

�11
�22
�12

2
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3
5 =

1= E −ν= E 0
−ν= E 1= E 0

0 0 1= G

2
4

3
5 σ11

σ22
σ12

2
4

3
5 ð32Þ

with the shear modulus calculated as G = E
2ð1+ νÞ.

The shape of the deformed structure and the position of the liquid–
gas interface are compared with experimental data in Fig. 3 for the
standing beam immersed in shallow oil, in Fig. 4 for the standing beam
immersed in deep oil and in Fig. 5 for the hanging beam. In the
numerical results, the hanging beam exhibits a slight bend near its
midpoint after the impact of the water on the structure. Consequently,
higher bending modes are active in the numerical model. A nonlinear



Fig. 3. The comparison between the experimental data and the numerical results on the
fine grid of the rolling tank with a standing beam in shallow oil after 0.92 s, 1.20 s, 1.40 s
and 1.68 s.

Table 1
The number of degrees-of-freedom in the different grids for the simulations of the
rolling tank and the falling cylinder. The number in front of the plus sign refers to the
fluid domain, the number behind it to the solid domain.

Standing beam
shallow oil

Standing beam
deep oil

Hanging beam
shallow water

Falling cylinder

Coarse 51,160+581 97,840+1141 127,888+2821 22,416+1212
Medium 81,016+1229 171,120+2429 233,080+6029 87,532+2412
Fine 118,448+2117 254,216+4197 372,688+10437 354,552+4812
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material model which performs a curve fit of tension test data does
not eliminate this difference in behaviour. Accurate data from bending
tests might improve the result but such tests are difficult to perform
on a rubber material.

For amore quantitative comparison, Fig. 6 depicts the displacement
of the tip of the beamparallel to the bottom of the tank (in the rotating
reference frame) for the three configurations and the three grids. For
all configurations, the differences between the grids are small. The
agreement between the experiments and the numerical results is
good, especially for the standing beam in deep oil. The measurement
error is relatively large for the standingbeam in shallowoil because the
displacements are an order ofmagnitude smaller than for the standing
beam in deep oil. For the standing beam in shallow oil and for the
hanging beam, the difference between the partitioned results and the
experiments is larger but still similar to the difference between the
monolithic PFEM simulations and the experiments [9].

In each time step, the L2-norm of the residual is reducedwith three
orders of magnitude with respect to its value in the first coupling
iteration of the time step (�o=10−3||r0||2). The number of IQN-ILS
coupling iterations per timestep (averaged over all time steps) is
listed in Table 3 for all grids and it can be seen that the number of IQN-
ILS coupling iterations is independent of the number of degrees-of-
freedom. From the perspective of the IQN-ILS coupling algorithm, the
hanging beam case is easiest (i.e. fewer coupling iterations per time
step) because the beam comes mainly into contact with air which has
a lower density than the liquid such that the added-mass effect is
smaller [1,24,25].

All simulations are subsequently repeated using Gauss-Seidel
iterations with Aitken relaxation. Also for Aitken relaxation, there is
no significant influence of the number of grid points on the number of
coupling iterations per time step. Especially for the standing beam, the
algorithmwith Aitken relaxation requires significantly more coupling
iterations per time step while the IQN-ILS algorithm is only slightly
faster than Aitken relaxation for the hanging beam. The larger per-
formance gap between the IQN-ILS algorithmandAitken relaxation for
the standing beam cases compared to the hanging beam case is
explained by the stability analysis in [24,25]. In this analysis, the error
on the interface's displacement during Gauss-Seidel coupling itera-
tions is decomposed in different components, each with its own wave
number.More components in the residual vector r become unstable or
badly damped during the coupling iterations if the density of the fluid
increases and the amplification factor of each component depends on
Table 2
The material properties for the simulations of the rolling tank and the falling cylinder.

Standing beam
shallow oil

Standing beam
deep oil

Hanging beam
shallow water

Falling
cylinder

Liquid ρ [kg/m3] 917 917 998.2 998.2
μ [Pas] 0.04585 0.04585 0.001003 0.001003

Gas ρ [kg/m3] 1.225 1.225 1.225 1.225
μ [Pas] 1.79·10−5 1.79·10−5 1.79·10−5 1.79·10−5

Solid ρ [kg/m3] 1100 1100 1900 1900
E [N/m2] 6·106 6·106 4·106 –

ν [–] 0.49 0.49 0.49 –
its wave number. Because the IQN-ILS coupling algorithm has been
developed based on this stability analysis, the residual vector is
decomposed in components (Eq. (23)) and each component is treated
differently (Eq. (26)). It has been observed during the simulations that
the columns of the matrix V have a different wave number. Aitken
relaxation, on the other hand, uses the same relaxation factor for the
entire residual vector (Eqs. (29)) and so it does not take into account
that the components with different wave numbers have different
amplification factors. For the hanging beam case where the beam
mainly comes into contactwith lowdensity air, there are only very few
unstable components in the residual vector so the decomposition of
the IQN-ILS algorithm does not result in a significant benefit.

The comparison of the wall clock time of the IQN-ILS algorithm and
Gauss-Seidel iterations with Aitken relaxation is almost identical to
the comparison of the number of coupling iterations. This is due to the
fact that the CPU time for the calculations of the coupling algorithms
themselves is negligible with respect to the CPU time required for the
solution of the discrete equations in the fluid and solid domain. The
information from previous time steps could not be reused by the IQN-
ILS algorithm to improve the approximation of the Jacobian's inverse
and to reduce the number of coupling iterations as in [27] due to the
large difference in behaviour between the time steps.

6. Falling composite cylinder

Wave-energy converters that consist of several buoys, so-called
“floating point absorbers”, which move relative to a large floating
platform are currently under development in the Sustainable



Fig. 4. The comparison between the experimental data and the numerical results on the
fine grid of the rolling tank with a standing beam in deep oil after 1.84 s, 2.12 s, 2.32 s
and 2.56 s.
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Economically Efficient Wave Energy Converter (SEEWEC) project
[40,41]. The Buldra test platform and one of the absorbers are depicted
in Fig. 7. Ahydraulic circuitwitha turbine converts the verticalmotionof
the absorbers into a rotary motion which is used to drive a generator.
The absorbers are made of a composite material by means of filament
winding. They have tomeet diverse requirements and the impact of the
absorber on the water surface (vertical slamming) or the impact of
waves on the absorber (horizontal or breaking wave slamming) are
important design aspects. The hydrodynamic impact pressure locally
deforms the absorber, which will damage the composite material in
time. To accelerate the design process of thesewave-energy converters,
the fluid–structure interaction during the impact of both a rigid and a
deformable composite cylinder on a water surface is simulated nu-
merically. Previous studies of the impact of a cylinder on awater surface
([42–44], among others) analyze metal cylinders or employ linearized
calculation techniques.

The geometry for this simulation can be seen in Fig. 8; only half of
the cylinder is simulated due to the symmetry. The fluid domain is
two-dimensional and it consists of a rectangular box around the
cylinder which has an outer diameter of do=0.3m. The box is 1.5do
wide and it extends from 2do above the centre of the cylinder to 3do
below the centre. The cylinder's bottom is positioned 0.025 m above
the water surface at the beginning of the fluid–structure interaction
simulation. Atmospheric pressure is applied on the top boundary and
symmetry is imposed on the right boundary. The remaining bound-
aries of the fluid domain, including the fluid–structure interface, are
no-slip walls. The structural model is a three-dimensional cylinder
with a thickness of 0.003 m. It is discretized with 4-node shell ele-
ments with reduced integration but it only contains one row of
elements along the axis of the cylinder. The height of the cylinder is
calculated to obtain square shell elements. The nodes on the symmetry
line are constrained such that they can onlymove vertically; the nodes
on the front and back of the cylinder cannot translate along the
cylinder's axis and they can only rotate around an axis parallel to the
cylinder's axis. Although the three-dimensional model for the cylinder
is constrained to two-dimensional motion, a three-dimensional
geometry is required for the model of the composite material.

Most material parameters are concisely listed in the last column of
Table 2. The composite material of the shell elements is modeled with
two orthogonal symmetry planes for the elastic properties (ortho-
tropic). Consequently, the plane stress approximation of the linear-
elastic material law Eq. (8) is given by
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σ12
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5 ð33Þ

in which the local material orientation is indicated with subscripts 1
to 3 so that direction 1 is aligned with the fiber and direction 3 is the
normal to the surface of plane stress. The Poisson's ratio ν21 has been
substituted by ν21 = E2

E1
ν12. For this material, the Young's moduli are

E1=25.77⋅109N/m2 and E2=6.2519⋅109N/m2, the shear modulus is
G12=4.2⋅109N/m2 and the Poisson's ratio is ν12=0.38. The shear
moduli G13=4.2⋅109N/m2and G23=2.5⋅109N/m2 are used to model
transverse shear deformation in the shell. The tensile (t) and
compressive (c) stress limit is σ1t=σ1c=600⋅106N/m2 in the fiber
direction and σ2t=σ2c=60⋅106N/m2 in the transverse direction; the
shear strength of the material is σ12s=50⋅106N/m2.

Rayleigh damping has been added to the structure with a factor of
αr=5.46 for the mass-proportional contribution to the damping and
βr=1.41⋅10−5 for the stiffness-proportional contribution. The factors
αr and βr have been calculated so that the first and second eigenmode
of the cylinder have a damping ratio of 0.01which is a typical value for
multilayered cylindrical shell structures [45,46].

During the production of the absorbers, the fibers are wound in
different directions. This is modeled with a shell section that contains
five layers of 0.6⋅10−3m thick. The fibers of the inner layer are
perpendicular to the cylinder's axis, while the four outer layers and
the axis meet alternately at an angle of 70° and −70°. Simpson's rule
with 3 points in each layer is used for the integration through the
thickness of the shell section. This material model is available in many
existing structural codes but not yet in most monolithic codes for
fluid–structure interaction, which stresses the benefit of partitioned
simulations with black-box solvers.

The impact of the composite cylinder on the water surface has
been simulated on three different grids, named coarse, medium and
fine. The coarse grid is depicted in Fig. 8 and the number of degrees-
of-freedom in the fluid and solid domain of all grids is listed in Table 1.
Again, the number of degrees-of-freedom in the fluid domain changes
slightly during the simulations due to remeshing. The time step is
100∙10−7s on the coarse grid, 50∙10−7s on the medium grid and
25∙10−7s on the fine grid so as to obtain a Courant number C = voΔt

Δx
of

0.02 on all grids, based on the initial velocity of the cylinder (vo) and
the height of the cells adjacent to the cylinder (Δx). Because especially
the impact is of interest, a short period of 0.0125 s is simulated on the
fine grid and a longer time span of 0.0250 s and 0.0500 s is simulated
on the medium and coarse grid, respectively.

The cylinder is given a downward velocity of vo=5m/s in the
structural solver at the onset of the fluid–structure interaction
calculation (t=0). Consequently, the gas phase that surrounds
the cylinder has to move at the same speed at the beginning of the



Fig. 5. The comparison between the experimental data and the numerical results on the fine grid of the rolling tank with a hanging beam above shallow water after 0.76 s, 1.64 s,
2.40 s, 2.68 s, 2.96 s, 3.32 s, 3.40 s, 3.56 s, 3.80 s, 3.84 s, 4.00 s and 4.16 s.
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coupled simulation; otherwise the gas in the cells adjacent to the
cylinder would be accelerated from 0 m/s to 5 m/s in the first time
step. To obtain a proper initialization of the fluid domain, the grids
are constructed so that the centre of the cylinder in the fluid grid is
located at 2

3
voT (with T=10−2 s) above the centre of the cylinder in

the structural grid. The fluid domain is then initialized with all
velocities equal to zero at time t=−T. Before the beginning of the
coupled calculation, 100 time steps of 10−4 s are performed with the
flow solver only to step from t=−T to t=0. During these time
steps, the no-slip wall that represents the outside of the cylinder is
moved downwards as a rigid body with prescribed vertical velocity

v = vo
t
T

� �2
−1

	 

: ð34Þ

The gas that surrounds the cylinder is consequently accelerated
from 0 m/s to a downward velocity vo and the position of the



Table 3
The number of coupling iterations per time step (averaged over all time steps and
between brackets averaged over all time steps between t=0 and t=0.0125 s) for the
simulations of the rolling tank and the falling cylinder.

Standing beam
shallow oil

Standing beam
deep oil

Hanging beam
shallow water

Falling cylinder

IQN-ILS Aitken IQN-ILS Aitken IQN-ILS Aitken IQN-ILS Aitken

Coarse 7.16 11.93 8.90 15.16 4.54 5.34 10.4 (7.6) 17.9 (12.6)
Medium 7.32 12.11 8.95 15.40 4.53 5.14 9.5 (7.6)
Fine 7.62 12.53 8.96 15.30 4.53 4.92 8.1

Fig. 6. The displacement of the tip of the beam parallel to the bottom of the tank (in the
rotating reference frame) for the simulation of the rolling tankwith (a) a standing beam
in shallow oil, (b) a standing beam in deep oil and (c) a hanging beam above shallow
water.
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centre of the cylinder is identical in the fluid and solid domain at
t=0.

During the fluid–structure interaction calculation, the cylinder first
falls through the air region and then it impacts on the water surface
around t=5∙10−3 s. There is no exact time of impact because there is
no exact position of the liquid–gas interface as this interface is not
tracked with grid points but reconstructed from the volume fraction.
The shape of the free-surface during the impact is displayed in
Fig. 9. These plots show that the cylinder is first compressed vertically
(Fig. 9(c)) and then stretched vertically (Fig. 9(e)). This can also be
observed in Fig. 10(a) which depicts the deformation of the cylinder,
defined as the difference between the initial and current value of
the distance between the top and the bottom of the cylinder. The
deformation is small while the cylinder is traversing the air region
but it increases rapidly during the impact on the water surface. After
the initial contact, the deformation oscillates with decreasing
amplitude. The maximal deformation amounts to approximately 6%
of the cylinder's diameter.

Fig. 10(b) displays the vertical velocity at the bottom of the
cylinder as a function of time. The simulation on the coarse grid has
been performed with the flexible cylinder as described above but also
with a “rigid” cylinder which has thousand times larger stiffness
moduli than the flexible cylinder. At impact, the velocity at the bottom
of the cylinder jumps from−5 m/s to−2 m/s for the flexible cylinder,
followed by oscillations due to the interaction between the inertia in
the flexible structure and in the fluid. The velocity decreases more
gradually for the rigid cylinder as it barely deforms. The vertical force
on the entire cylinder is shown in Fig. 10(c) and the peak at impact is
much higher for the rigid cylinder, as expected. As the force is
proportional to the acceleration and thus to the second time
derivative of the displacement, it is much more difficult to have a
smooth evolution of the force than a smooth evolution of the
displacement. Consequently, few authors show stresses or forces as
a function of time.

Fig. 10 shows that the solution of the different grids is very close to
each other, especially for the medium and fine grid. The maximal
deformation is almost identical on all grids but there is a small
difference in the time of impact between the coarse grid on one hand
and the medium and fine grid on the other hand, as can be seen in
Fig. 10(b) and (c). Because decreasing the time step with a factor two
on the coarse grid does not yield significant improvement, it can be
concluded that the difference is mainly due to the grid.

Fig. 11 depicts the pressure relative to the atmospheric pressure on
three different segments of the fluid–structure interface as a function
of time for the flexible and the rigid cylinder. The delay between the
peaks at the different locations can clearly be observed and the
amplitude of the peak decreases as one moves away from the bottom
of the cylinder. The peak of the pressure at the bottom of the cylinder
is 182∙103N/m2 for the flexible cylinder and 279∙103N/m2 for the rigid
cylinder, which proves that the fluid–structure interaction must be
taken into account during the design process to avoid a too strong and
therefore a too costly product. The minimal pressure during the
oscillations in t [0, 0.0125] s is 18∙103N/m2 below atmospheric
pressure for the flexible cylinder and 3∙103N/m2 below atmospheric
pressure for the rigid cylinder. The absolute pressure is in both cases
higher than the vapour pressure of pure water which is 2338N/m2 at
293 K and thus no cavitation occurs.



Fig. 8. The coarse grid for the simulation of the falling cylinder. A constant pressure is
imposed on the red boundary, yellow means a symmetry boundary, green is the fluid
domain and black represents a no-slip wall or the structural domain.

Fig. 7. (a) The Buldra test platform of the SEEWEC project and (b) a composite point absorber produced by means of filament winding.
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The damage to the composite material due to the impact is
assessed with the Tsai-Wu failure criterion in plane stress condi-
tion [47] which requires that

IF = F1σ11 + F2σ22 + F11σ
2
11 + F22σ

2
22 + F66σ

2
12 + 2F12σ11σ22b1

ð35aÞ
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The tensile and compressive strength in the fiber direction and
in the transverse direction are given above. Often, the coupling
coefficient f is set to 0 so that F12 disappears. The value of IF is analyzed
in all time steps near the impact and in all layers of the composite
material. Its maximal value is 0.25 so well below the limit.

In each time step, the L2-norm of the residual is reduced with three
orders of magnitude with respect to its value in the first coupling
iteration (�o=10−3||r0||2). The number of coupling iterations per time
step is displayed in Fig. 12 for the simulation on the coarse grid. About
5 IQN-ILS iterations per time step are required during the first 500
time steps while the cylinder is falling through air. However,
approximately 11 IQN-ILS iterations per time step are necessary to
reach convergence in the time steps in which there is contact between
the cylinder and the water. This difference illustrates the effect of the
fluid density on the stability of the coupling iterations [1,24,25]. The
number of coupling iterations per time step (averaged over all time
steps and over all time steps between t=0 and t=0.0125s) is similar



Fig. 10. (a) The deformation of the flexible cylinder as a function of time for the falling
cylinder. The deformation is defined as the initial distance between the top and bottom
of the cylinder (do) minus the current distance between the top and bottom (d). (b) The
vertical velocity at the bottom of the rigid and flexible cylinder as a function of time.
(c) The vertical force on the entire rigid and flexible cylinder as a function of time.

Fig. 9. The shape of the water surface on the coarse grid of the falling flexible cylinder
after (a) 0.005 s, (b) 0.010 s, (c) 0.015 s, (d) 0.020 s, (e) 0.025 s, (f) 0.030 s, (g) 0.035 s,
(h) 0.040 s and (i) 0.045 s.

2096 J. Degroote et al. / Computer Methods in Applied Mechanics and Engineering 199 (2010) 2085–2098
for all grids as can be seen in Table 3. This proves that the performance
of the IQN-ILS coupling algorithm is independent of the number of
degrees-of-freedom. For comparison, the simulation on the coarse
grid are also performed using Gauss-Seidel iterations with Aitken
relaxation which requires almost twice as many coupling iterations
to reach the same convergence tolerance. The number of coupling
iterations per time step is limited to 20. As in the previous section,
reuse of information from previous time steps to improve the
approximation of the Jacobian's inverse and consequently reduce
the number of coupling iterations as used in [27] does not function
well in this particular case due to the large difference in behaviour
between the time steps during the impact.

7. Conclusion

The numerical results demonstrate that the interaction between
free surface flow and an elastic structure can be simulated in a
partitioned way using the IQN-ILS coupling algorithm, even for cases
with strong interaction due to the incompressibility of the fluid.
Gauss-Seidel iterations with Aitken relaxation can also be used but
this requires more coupling iterations. Both coupling algorithms treat
the flow solver and the structural solver as a black box, meaning



Fig. 11. The pressure relative to the atmospheric pressure on the 1st, 6th and 11th
segment of the fluid–structure interface (counting from the bottom, 100 segments in
total) as a function of time for (a) a flexible cylinder and (b) a rigid cylinder with the
coarse grid.
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that existing solvers can be reused without modifications. Conse-
quently, the partitioned black-box approach allows to combine
complex models which are readily available in many flow solvers
Fig. 12. The number of coupling iterations per time step of the simulation of the falling
flexible cylinder with the coarse grid.
and structural solvers but not yet in monolithic fluid–structure
interaction solvers.

The rolling tank cases of [9] are used as a verification and the
partitioned simulations correspond well with experimental data.
Subsequently, the impact of a flexible composite cylinder on a water
surface is simulated to assess the effect of slamming on the absorbers
of floatingwave-energy converters. The impact of the flexible cylinder
is significantly different from the impact of a rigid cylinder, which
stresses the need for fluid–structure interaction calculations in the
design process. Grid refinement has been performed for all calcula-
tions and the coupling algorithm performs similarly on each grid.

In future research, the influence of a turbulence model in FSI
simulations has to be investigated as this could be relevant for some
cases with free surface flow, for example for the hanging beam above
shallow water. In general, the hanging beam case is the one with the
highest discrepancies. Future studies to reduce these discrepancies
might be low Reynolds experiments, further assessment of the gap
influence in the experiments, determination of the uncertainty on the
mechanical properties of the solid and sensitivity of the simulations to
such uncertainties.

The experimental and numerical data for Figs. 6 and 10 can be
found online on http://www.FSI.UGent.be/files/fsi_free_surface.zip or
http://www.FSI.Ugent.be/files/fsi_free_surface.tar.gz.
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