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Abstract
Digital image correlation (DIC) has been acknowledged and widely used in recent years in the
field of experimental mechanics as a contactless method for determining full field
displacements and strains. Even though several sub-pixel motion estimation algorithms have
been proposed in the literature, little is known about their accuracy and limitations in
reproducing complex underlying motion fields occurring in real mechanical tests. This paper
presents a new method for evaluating sub-pixel motion estimation algorithms using ground
truth speckle images that are realistically warped using artificial motion fields that were
obtained following two distinct approaches: in the first, the horizontal and vertical
displacement fields are created according to theoretical formulas for the given type of
experiment while the second approach constructs the displacements through radial basis
function interpolation starting from real DIC results. The method is applied in the evaluation
of five DIC algorithms with results indicating that the gradient-based DIC methods generally
have a quality advantage when using small sized blocks and are a better choice for calculating
very small displacements and strains. The Newton–Raphson is the overall best performing
method with a notable quality advantage when large block sizes are employed and in
experiments where large strain fields are of interest.

Keywords: digital image correlation, speckle, interpolation, sub-pixel

1. Introduction

Experimental mechanics has been increasingly relying
in recent years on motion estimation image processing
techniques in obtaining full field displacement and strain fields.
Under the general name of ‘digital image correlation (DIC)’,
the approach has the advantages of being able to measure
a wide range of displacements over the whole analyzed
specimen area; it is a contactless method, meaning that
the measurement process does not affect in any way the
material behavior during tests and requires a relatively simple
experimental setup. Over time, various DIC algorithms have
been developed. Among these the most popular are those
involving the cross-correlation coefficient and variations of
the method for improving accuracy [1–3, 8, 9], the Fourier

transform [4–7], Newton–Raphson iterations [10–12] and
gradient-based optical flow [14, 15]. The last two classes
of algorithms present special interest because they are widely
used and address differently two of the most important driving
factors in algorithm development: computational performance
and sub-pixel accuracy. As shown in [13], the Newton–
Raphson methods have higher accuracy at the expense of
computational complexity while gradient methods are faster.

One of the problems in evaluating the performance of DIC
algorithms is that the artificial full-field displacement models
used in the literature as ground truth to characterize specimen
deformations may not reflect the variations encountered in
real motion fields. Rigid body displacement, linear and
quadratic displacement models [13, 16, 17] have been used,
resulting in good approximation of the absolute accuracy
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when the DIC algorithm motion model matched or was more
complex than the full-field displacement model. To provide
a better understanding of the advantages and limitations of
the algorithms in practical applications, this paper proposes
a new DIC evaluation method under more realistic but still
reproducible circumstances through the use of a larger variety
of realistic motion models and discontinuities, speckle patterns
obtained by photographing spray-painted material specimens
and a numerical deformation process that best simulates image
intensity changes captured by real cameras. The paper is
organized as follows: section 2 contains a short overview of
the five DIC algorithms that are evaluated, section 3 presents
the framework based on the radial basis function (RBF) theory
used to create the ground truth motion fields and images, and
finally sections 4 and 5 contain the results and conclusions of
the DIC method evaluation, respectively.

2. Digital image correlation algorithms

The fundamental principle behind DIC algorithms is that
motion information is extracted from speckle images that
show a speckle painted mechanical test specimen before and
after deformation, by minimizing a chosen similarity function
between subsets or blocks of the images. In this paper we
will focus the evaluation on the recovery of the sub-pixel or
fractional part of the displacements only since integer pixel
displacements are relatively easy to obtain through various
block matching or coarse-to-fine approaches.

Considering a ‘reference’and a ‘deformed’ block,
f (x, y) and g(x ′, y ′) of size M×M , occupying the same spatial
coordinates inside the images that represent the specimen
before and after deformation, the quadratic error measure
between the two blocks is defined as

E(u(x, y), v(x, y)) =
M∑

x=1

M∑
y=1

(f (x, y) − g(x ′, y ′))2 (1)

with

x ′ = x + u(x, y) (2a)

y ′ = y + v(x, y), (2b)

where u(x, y) and v(x, y) are the sub-pixel horizontal and
vertical displacements of the pixel located at the coordinates
(x, y) in the reference block.

Gradient DIC methods rely on the assumption that for small
displacements image intensity patterns remain unchanged
between the reference and deformed images. The two methods
evaluated in this paper rely on finding the solution for u(x, y)
and v(x, y) that minimizes the error function from equation (1)
by replacing g(x ′, y ′) with its first or second degree Taylor
expansion and solving the resulting linear system through a
least-squares approach. Depending on the complexity of the
motion that is to be recovered, various motion models within
the block can be assumed. Usually linear [18, 19] and rigid
body displacement motion models are used. The solutions
for the rigid body displacement model considering the two

Taylor expansions of the ‘deformed’ block are presented in
appendix A.

The Newton–Raphson method approaches the
minimization of equation (1) by gradual iterative
convergence toward the error function’s minimum and
usually is associated with more complex linear or quadratic
[12] motion models for the intensity patterns inside the
deformed blocks. Here, only the linear expression for the
pixel displacements is considered. In practice, starting from an
initial integer displacement solution, the algorithm iteratively
warps through bicubic spline interpolation the reference block
using the calculated motion parameters from the previous
iteration until it becomes similar to the deformed block, thus
minimizing the error between the two. The convergence
criterion used here was a maximum difference of 10−5

between each motion parameter in two consecutive iterations
with convergence reached after two to four iterations.
Because each iteration involves updating the Hessian of the
error function they can be computationally expensive. This
shortcoming can be avoided by using the approximation
introduced by Vendroux [11] where the Hessian elements are
calculated using only the first-order partial derivatives of the
interpolated block with respect to the motion parameters.

Robust methods in the form proposed by Black and Anandan
[20] seek to eliminate the disadvantage of using the quadratic
error function as block similarity measure because its resulting
motion estimate is equally influenced by all pixel motions
inside the block. By using a robust error function such as
M-estimators instead of the quadratic one, pixel locations
that fit the overall motion are preferentially used in the final
motion estimate. Consequently, the negative influence of
image noise, motion outliers and multiple motions inside the
block is limited. A popular choice for the robust estimator
chosen also here is the Lorentzian with the general expression

ρ(x, σ ) = log

(
1 +

( x

2σ

)2
)

, (3)

where σ is a parameter that controls the strength of the outlier
rejection. To increase the spatial consistency of the motion
field, a regularizing or smoothness term can be added to the
data term associated with the intensity levels in the image.
The criterion to be minimized in matching the two blocks
becomes for a translational motion model with u(x, y) = u0

and v(x, y) = v0

E(u0, v0) = λDED(u0, v0) + λSES(u0, v0), (4)

with

ED(u0, v0) =
M∑

x=1

M∑
y=1

ρD(f (x, y) − g(x + u0, y + v0), σD)

(5a)

ES(u0, v0) =
8∑

i=1

(ρS(u0 − ui, σS) + ρS(v0 − vi, σS)), (5b)

where λD, λS are weights assigned to the data and smoothness
terms ED and ES, ρD, ρS and σD, σS are the associated robust
error functions and corresponding parameters respectively and
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(ui)i=1,8 , (vi)i=1,8 the spatial neighbors in the motion fields of
the horizontal and vertical displacements u0 and v0.

To analyze the benefits and drawbacks of having a
regularization term in the error function, we will evaluate two
implementations: one with ES present and one with it absent
in E. The minimization of equation (4) through successive
over-relaxation (SOR) and values for the method’s parameters
are detailed in appendix B.

3. Realistic ground truth

The main contribution of this paper is to propose a method to
create generally realistic ground truth data for the evaluation
of DIC algorithms by deforming real speckle images. The
four ground truth images that will be used in the evaluation are
generated using different artificial displacement fields obtained
through two distinct approaches. In the first one, displacement
fields are calculated from the theoretical modeling of stress
and strain distributions in homogeneous materials under load.
Three theoretical scenarios are employed: a bi-axially loaded
infinite plate with a central hole presenting small and large
strain deformations and the lateral localized application of
a surface tension. All cases are of practical interest for
DIC evaluation since they simulate the theoretical solution
for frequently encountered experimental scenarios. The
inplane motion has a large degree of spatial variation and
the displacement magnitude can be easily modeled through
the stress and material properties parameters. The second
approach uses DIC results from real deformation tests to create
image-sized artificial displacement fields through radial basis
function interpolation providing a very flexible alternative to
theoretical displacements as well as finite-element generated
displacement fields [21]. This results in deformation fields
close to those encountered in mechanical experiments but
of course has the disadvantage that it suffers from the
artifacts generated by the measurement method. Experimental
relevance of the motion data in this case is assured through the
choice of the test setup from which motion data are extracted
and of the DIC algorithm parameters used to extract it. The
realistic nature of the ground truth is reflected also in the image
intensity levels by choosing the interpolation method that
guarantees the best reproduction of deformed speckle images
acquired by the camera. This differs from other approaches
that seek the best interpolation method for simulating the
sub-pixel intensity pattern movements because the principal
goal of the evaluation is to replicate as much as possible the
real experimental data and not to simulate ideal experimental
conditions.

The chosen size for the ground truth images and implicitly
all generated artificial motion fields is 1024 × 1024 pixels as
it is a resolution easily attainable by modern digital cameras
and provides, correlated with the block sizes chosen for the
DIC algorithms, a reasonable amount of motion information
for the statistical relevance of the results.

3.1. ‘Plate with hole’ model

The solution for the inplane displacements of an infinite
isotropic plate with a hole bi-axially loaded as shown

Figure 1. Bi-axial loading of an infinite plate with a hole.

schematically in figure 1 can be obtained by applying the
superposition principle for the Kirsch solution in the case of
uniaxial stress. This results in the following expressions for
the radial and tangential polar coordinate displacements u(p)

and v(p) respectively [22]:

u(p)(x, y) = 1

2E
[(A + B cos 2θ)σxx + (A − B cos 2θ)σyy]

(6a)

v(p)(x, y) = 1

2E
C(σxx − σyy) sin 2θ (6b)

with the terms A,B and C

A = r(x, y)[(1 − ν) + (1 + ν)c2(x, y)] (7a)

B = r(x, y)[4c2(x, y) + (1 + ν)(1 − c4(x, y))] (7b)

C = −r(x, y)[(1 + ν) + 2(1 − ν)c2(x, y) + (1 + ν)c4(x, y)],

(7c)

where E is the elasticity modulus, ν is Poisson’s ratio, a is
the radius of the hole, r(x, y) is the distance from the point of
interest located at (x, y) to the center of the hole, c = a/r, θ is
the angle of the point of interest with respect to the x axis and
σxx, σyy are the stresses applied in the directions consistent
with the horizontal and vertical directions. The horizontal and
vertical displacements can be obtained from equation (6a) and
equation (6b) with a transformation of the form

u(x, y) = u(p)(x, y) cos θ − v(p)(x, y) sin θ (8a)

v(x, y) = u(p)(x, y) sin θ + v(p)(x, y) cos θ. (8b)

In figure 2 the typical contours of the artificial horizontal
and vertical displacements are illustrated with material
properties E = 210 GPa, ν = 0.25 corresponding to steel,
a = 200 pixels and stresses σxx = 50 MPa, σyy = 350 MPa.

3.2. ‘Concentrated lateral surface tension’ model

Applying force on a very small surface on the edge of a
solid isotropic body in a horizontal direction generates a
highly localized surface tension and stress area around the
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Figure 2. Horizontal (left) and vertical (right) displacement contours for the ‘plate with hole’ displacement model.

Figure 3. Concentrated lateral tension.

point of application. For the scenario indicated in figure 3,
the following expressions [23] for the inplane horizontal and
vertical displacements based on the solution for the ‘Flamant
problem’ can be obtained:

u(x, y) = −2Fx

Eπ

(
ln

r(x, y)

d
+

1 + ν

2
sin2 θ

)
(9a)

v(x, y) = Fx

Eπ
[(1 + ν) sin θ cos θ − (1 − ν)θ ], (9b)

where E is the elasticity modulus, ν is Poisson’s ratio, Fx is
the lateral surface tension, r(x, y) is the distance from the
point of interest located at (x, y) to the stress application
point, θ is the angle of the point of interest with respect to
the x axis and d is the width of the material. In obtaining
these particular solutions, the vertical displacements along
the stress application direction and the horizontal and vertical
displacements at the right edge of the body are considered
zero as boundary conditions. The contours of the artificial
horizontal and vertical displacements are shown in figure 4
for a lateral surface tension Fx = 420 kN m−1 present on the
left edge of the specimen and considering the material to be
steel with the same properties as in section 3.1. Because the
horizontal displacements are highly localized, only a detail of
the whole horizontal displacement field is shown.

3.3. Deformation fields extracted from DIC measurements

In many cases where DIC algorithms are being employed,
little or no theoretical background information exists on the
behavior of the analyzed material specimen and thus no
theoretical formulas of the underlying displacement fields can
be formulated. It is therefore necessary to rely on the DIC
results to create artificial motion fields tailored to specific
experiments. The influence of outliers from the experimental
motion data, caused by lighting variations, imperfections in
the speckle pattern, camera noise and the numerical approach
of the DIC algorithm, can be minimized in the creation of the
artificial motion fields by using only a subset of the motion
information, distributed on a sparse grid. A second observation
to suggest the use of a sparse grid is that the largest parts of
the motion fields are smoothly varying and necessitate less
information for the interpolation process resulting in both
smoother artificial displacements and increased interpolation
speed.

Radial basis functions have been extensively used for
sparse data interpolation in a wide range of fields, from facial
expression recognition and medical imaging to mechanical and
aeronautical applications [24–32], which makes their choice
appropriate in the creation of the ground truth motion fields.
The basic principle behind RBF interpolation is that each
interpolated value can be expressed as a weighted sum of
the values from known data locations with the weighing factor
in direct proportion to a function of the Euclidean distances
between the known and interpolated locations. Various radial
basis functions � are used in the literature depending on the
application field, this paper investigating the usage of four
functions:

• linear: �(x) = x;
• cubic: �(x) = x3

• multiquadric: �(x) =
√

x2 + c2

• thinplate spline: �(x) = x2 log(x),

where, if present, the parameter c controls the shape of the basis
function. The theoretical aspects of solving the interpolation
problem for a given radial basis function are presented in
appendix C. Since the artificially generated displacements

4



Meas. Sci. Technol. 21 (2010) 055102 C Cofaru et al

−0.462

−0.561
−0.661

−0.76
−0.86

−0.959

10 20 30 40 50 60

490

500

510

520

530

540

−0.00818

0.00818

−0.00818

0.00818

0.0245

0.0409

0.0736

−0.0245

−0.0409

−0.0736

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

Figure 4. Detail of the horizontal (left) and vertical (right) displacement contours for the ‘concentrated lateral tension’ displacement model.

represent the new ground truth, they do not need to perfectly
reproduce the underlying real displacements but instead to
create an experimentally relevant simulation of the material
deformation. This permits the usage of any of the radial
basis functions depending on the desired or assumed spatial
variation of the motion and adds to the flexibility of the method
as it allows pre-processing of the initial data with the scope of
increasing its reliability.

To create the sparse grids for the displacement
interpolation an adaptive quadtree partitioning scheme similar
to that found in [25] is used to adaptively select locations
from the initial motion fields to be used as known data points
in the displacement interpolation process: after starting with
an initial regular grid, at each step, data are interpolated
using the resulted adaptive grid from the previous step. The
errors between the initial displacement data and the interpolant
are evaluated in neighboring locations situated at half node
distance around nodes specifically selected in the previous
step. If at a certain location the error is smaller than a
chosen ‘coarsening’ limit εC , that location will not be added
on the grid. Otherwise, the location is added and the error is
compared to a ‘refining’ limit εR: if the error is larger than
this limit, the neighbors will be used in the error evaluation
for the next iteration interpolant. The limits εC and εR are
adaptively calculated to keep constant at each iteration the
percentages of points that are eliminated or whose neighbors
will be investigated. Vertical displacements may exhibit
different spatial variations from the horizontal ones, both
in amplitude and frequency, thus the selection algorithm is
applied separately for the horizontal and vertical displacements
in order to adequately capture variations in each direction and
stops when the distance between a node on the grid and its
neighbors is smaller than 1. For numerical stability, as noted in
[25], adaptation of the shape parameter c for the multiquadric
RBF (which is initialized with the mean distance between two
neighboring nodes of the initial regular grid) is done by halving
its value at each iteration.

The initial motion data for the artificial displacements
came from an earlier experiment [7] in which a plastic glass
security film with three central holes is subjected to uniaxial

vertical stress in an upward direction. The Newton–Raphson
DIC method with a block size of 16 × 16 pixels, no overlapping
between blocks and a linear motion model is used to obtain the
horizontal and vertical motion fields. The block size chosen
offered a good compromise between accuracy and spatial
resolution: the use of a smaller block size would necessitate
additional processing of the motion fields as the number of
outliers would be very large while larger block sizes would
result in severe smoothing of the discontinuities present. The
contours of the initial motion fields of size 64 × 64 after being
filtered with a 3 × 3 median filter for gross outlier removal are
shown in figure 5.

As can be noticed from the contours, motion variations
on the horizontal direction are quite small and with a large
degree of noise while vertical displacements exhibit a large
discontinuity in the central area due to the presence of the
holes. For the motion interpolation procedure the multiquadric
RBF was used with an initial grid of 6 × 6 locations and the
limits εC and εR set to 1% and 12% of the total number of new
locations added in the current iteration. The contours of the
resulting artificial motion fields are presented in figure 6. In
total, 284 locations were used for the horizontal displacement
and 263 for the vertical respectively which account for less
than 7% out of the total number of 4096 locations. The
result of the interpolation procedure was the smoothing of
large parts of the motion fields while maintaining the typical
amplitudes. An undesired effect is the enlargement of the
central discontinuity in the vertical displacements in direct
proportion to the zoom factor imposed by resizing the dataset
to image size, in this case the block size of the N-R algorithm
used to obtain the motion data. The undesired smoothing effect
can be compensated for by either choosing a smaller block size
for the motion estimation algorithm or adaptively smoothing
the motion field directly with an edge enhancing operator like
anisotropic diffusion [33]. Here, no post-processing of the
motion fields is done as the gradient magnitude is large taking
into consideration the block sizes used in the evaluation of the
DIC methods.
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Figure 5. Horizontal (left) and vertical (right) displacement contours for the initial motion data used in interpolating artificial displacements.
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Figure 6. Horizontal (left) and vertical (right) displacement contours of the interpolated image sized artificial displacements.

3.4. Image warping

The speckle patterns used in the ground truth images were
photographed with a Pixelink PL-A782 camera at a resolution
of 2208 × 3000 pixels. Only the central 1024 × 1024 pixel
region was used in the warping process. The mechanical
setup resulted in a pixel size of 8.33 μm in the object plane.
Creating the speckle pattern consisted of first painting the
specimen white and subsequently spray painting it with black
paint. Direct application of the paint on the specimen surface
resulted in unfeasibly large speckles, so instead, the spray
paint was applied on a surface near the specimen allowing
only very small paint particles to settle to the specimen itself.
This resulted in a random speckle pattern with speckle sizes
ranging from 2 to 20 pixels in diameter or 16.6 to 170 μm
respectively. Prior to taking photographs of the specimen, the
camera was aligned with a laser perpendicular to the specimen
to avoid any out-of-plane displacements and calibrated through
the proprietary software to compensate any lighting variation
across the material surface, fixed-pattern noise and photo-
response nonuniformities. The experimental setup used and
the resulting speckle pattern are shown in figure 7.

The radial basis function interpolation framework is
further investigated in creating the four ground truth speckle

images once the artificial motion fields are obtained. Because
of the high frequency nature of speckle images, expressing a
pixel’s intensity as a weighted sum of neighboring pixels as the
RBF theory implies can be achieved more efficiently by using
only highly local information. The interpolation procedure
starts by dividing the reference speckle image into blocks and
subsequently warping each of them individually, according to
the corresponding displacements for each pixel. Additional
pixels on the borders of the blocks are added to eliminate
any interpolation artifacts near the block borders, the number
added depending on the magnitude of the displacements. In the
case of all the tests performed here, borders two pixels in width
are used. After interpolation, to simulate the quantization
process of a real camera, the resulting real-valued gray levels
are quantized to 8 bit integers. Considering a 3 × 3 block
with a border one pixel in width in the reference image as
shown in figure 8, obtaining the intensities of each individual
pixel location in the warped block is done by interpolating the
intensity at the location opposite from where the motion vector
indicates the intensity pattern will move.

To analyze the interpolation quality of the interpolation
method, a rigid body displacement registration test is
employed. The specimen containing the speckle pattern

6
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Figure 7. Experimental setup (left) and speckle pattern used to create the ground truth images (right).

Figure 8. Image warping process for a 3 × 3 pixel block (its actual
size is 5 × 5 because of the border pixels used only for
interpolation): pixel intensities at the locations indicated by the dark
circles in the reference block are replaced in the warped block by the
corresponding interpolated intensities indicated by the squared
locations.

is translated using a Instron 8801 servohydraulic machine
50 μm in steps of 10 μm corresponding to 1.2 pixels and
pictures taken before and after each translation step. The
camera was triggered electronically so that the effect of
vibrations could be kept to a minimum and not affect the
calibration. Since only the central 1024 × 1024 pixel
central area is analyzed, the integer pixel displacements
can be easily compensated without loss of information at
its borders so that only the sub-pixel displacements remain
present, resulting in displacements of 0.2, 0.4, 0.6, 0.8 and
1.0 pixels for the five displaced pictures. The image of
the specimen before translation is warped to simulate the
five displacements and the root mean square error (RMSE)
between it and the real displaced pictures is calculated.
Additional comparisons are done by warping the second,
third and fourth displaced pictures and comparing them to

the subsequent four, three and two pictures in the sequence.
Bicubic and bicubic spline are included along with the RBF
interpolation methods in the evaluation to provide a quick
quality reference. The results are shown in figures 9(a),

(b), (c) and (d), respectively. The chosen block size for the
RBF interpolation was 8 × 8 pixels with the mention that
insignificant quality differences were noticed when varying
the dimensions between 3 × 3 and 32 × 32 pixels.

The results clearly indicate that the best registration
quality is given by the linear RBF followed by bicubic
interpolation. This might be due to the fact that the linear
weighted averaging in which the pixel intensities are calculated
is similar to the process in which the camera system calculates
the intensity of a given element in the CCD sensor array. Since
the goal is to reproduce as accurately as possible pictures
taken by the camera, all the warped ground truth images
used in the DIC evaluation will be generated using the linear
RBF interpolation and the block size kept constant at 8 × 8
pixels.

4. DIC method evaluation

The evaluation of the five DIC methods consists in using
them to calculate the displacements and strains between the
reference and the four artificially deformed ground truth
speckle images. Block sizes of 32 × 32, 48 × 48 and 64 ×
64 pixels with a 16 pixel step size between blocks are used in
the three test cases that refer to small strains. In evaluating
the displacement errors, to take advantage of the fact that the
motion is known for each pixel location, the displacement
fields computed by each method are resized to the image size:
where the translational displacement model was considered,
all pixel locations from the block that contributed to the same
displacement are assigned the computed value while for the
linear model, all calculated parameters are used. The software
implementation and tests were realized in the 64-bit version
of Matlab on a 2.0 GHz Intel Core 2 Duo processor with 4 GB
of RAM running the Linux operating system.

The displacement analysis takes into consideration the
mean and standard deviation of the horizontal and vertical
motion errors calculated between the ground truth motion
fields and the DIC results after the resizing operation.
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Figure 9. Mean square error between registered and displaced speckle images.

Considering the motion error e(x, y) at the location (x, y)

in either the horizontal or vertical motion fields of size N ×N :

e(x, y) = uth(x, y) − uDIC(x, y), (10)

where uth(x, y) and uDIC(x, y) are the theoretical and
calculated displacements, and the mean error and standard
deviation are defined as

ē = 1

N2

N∑
x=1

N∑
y=1

e(x, y) (11)

and

σe =
√√√√ 1

N2 − 1

N∑
x=1

N∑
x=1

(e(x, y) − ē)2, (12)

respectively.
The error analysis will concentrate on both the full field

errors and on the errors located in the image regions with
strong discontinuities in the motion field. For the ‘plate with
hole’ model, these regions correspond to a 600 × 600 area
around the hole located in the center of the image, for the
‘concentrated lateral tension’ model to a 300 × 300 pixel
area in the middle-left part of the image where the force is
applied and for the ‘DIC measurement based’ displacements,
the central 400 × 400 pixel area.

The strain error analysis consists in calculating the mean
of the absolute strain errors between the theoretical and the
DIC measured strains in the locations corresponding to the

centers of each motion estimation block. The errors are
calculated separately for the horizontal, vertical and shear
strain components εxx, εxy and εyy, respectively. Obtaining
the strain for a certain location is done through a linear fit
of the horizontal and vertical displacements inside a strain
window of 11 × 11 displacement values centered upon the
location where the strain is desired, an approach found also
in [34]. Special attention has been given to eliminating from
the evaluation the locations that produce large false strains
due to the absence of motion, like the immediate surroundings
of the hole in the plate with the hole model. The resulting
calculated strain and absolute error fields had the dimensions
of 53 × 53, 52 × 52 and 51 × 51 data points for DIC block
sizes of 32×32, 48×48 and 64×64 pixels, respectively.

4.1. ‘Plate with hole’ model errors

Figure 10 presents the mean full-field errors and standard
deviations in the form of error bars for the ‘plate with hole’
model. The vertical axis addresses the magnitude of the error
and standard deviation measured in pixels. The DIC methods
analyzed are represented on the horizontal axis where the
abbreviations ‘G-I’, ‘G-II’, ‘N-R’, ‘R’ and ‘R-S’ stand for
the two gradient methods with first and second degree Taylor
expansions, the Newton–Raphson, robust and robust with
smoothing term methods, respectively. Clearly the Newton–
Raphson method produces the best results both in terms of
mean error and in terms of standard deviation of the error,
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Figure 10. Mean error and standard deviation of the horizontal and vertical displacements for the ‘plate with hole’ displacement model.

the only exception being the horizontal errors for 32 × 32
pixel block sizes where the first gradient method performs
better. Increasing the block size produces a degradation of the
quality for all methods except the Newton–Raphson one which
performs better, most likely because the block size favors
the accurate determination of the linear motion parameters
compared to the other methods where the translational model
clearly does not accurately describe the motion inside the
larger block. The robust methods performed better than the
gradient ones, the one including the smoothing term having
a slight advantage in quality. Analysis of the errors in the
600 × 600 pixel central area shown in figure 11 reveals larger
errors and standard deviations for all methods and confirms the
previous observations, with the Newton–Raphson mean errors
being up to one order of magnitude smaller than those of the
other algorithms.

The theoretical strains associated with the displacements
fields presented variations between 1.2 × 10−3 and −6.86 ×
10−4 for εxx, 2.8×10−3 and −2.8×10−3 for εxy and 4.7×10−3

and 1.73×10−5 for εyy . In figure 12, the mean of the absolute
strain errors are presented for the tested DIC methods. The
main observation is that larger block sizes affect the quality
of the strain fields probably because the motion model is
too simple considering the areas covered in the image and

their underlying variations. For the horizontal strains, which
are on average smaller, the gradient methods performed best;
however, they exhibited poor performance for the shear and
vertical strains. In these cases the Newton–Raphson method
consistently produced the smallest errors. Strains larger than
a lower limit of 150–200 με were calculated by all methods
with an accuracy of 15% or better, as the strain amplitude
increased. The only notable exception was found in the
immediate vicinity of the central hole for the shear strain errors
with the largest strain errors varying from 50% to over 100%
depending on the DIC method. This is mainly due to the fact
that strains in these regions are extremely localized. Also,
fewer displacement values are available for strain estimation
when the strain window partially covers the hole because these
locations are automatically excluded. Practical applicability
of the DIC methods can however be improved in the regions
near the hole through a more thorough block, step and strain
window size optimization.

4.2. ‘Concentrated lateral tension’ model errors

The results for the second test case presented in figure 13 show
that the best quality is obtained by the gradient methods except
when using 64 × 64 blocks for the horizontal displacements

9
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Figure 11. Mean error and standard deviation of the horizontal and vertical displacements for the ‘plate with hole’ displacement model in a
600 × 600 pixel area around the central hole.
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Figure 12. Mean of the absolute strain errors for the ‘plate with hole’ displacement model.

which present the strong lateral discontinuity. Interestingly,
the mean error of −0.0064 pixels for the gradient methods
using 32 × 32 pixel blocks is lower than the Newton–
Raphson method error of −0.0088 pixels obtained when using

64 × 64 pixel blocks. The largest errors as well as standard
deviations in the case of the horizontal displacements are
given by the robust methods because they treated the highly
localized motion as outliers and discarded the information
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Figure 13. Mean error and standard deviation of the horizontal and vertical displacements for the ‘concentrated lateral tension’
displacement model.

from the pixels with large displacements. For the vertical
displacements, which have an amplitude less than 0.1 pixels,
both gradient and robust methods outperformed in terms of the
mean error the Newton–Raphson method for all three block
sizes, their errors being up to one order of magnitude smaller.
Considering only the 300 × 300 pixel region around the main
horizontal motion discontinuity, the results shown in figure 14
indicate that the lowest horizontal and vertical errors for blocks
sized 32 × 32 and 48 × 48 pixels are given by the gradient
method containing the first degree Taylor expansion while for
the block sized 64 × 64 pixels, the Newton–Raphson method
yields the lowest errors albeit significantly larger standard
deviation. Also, as previously noticed for this case, the
absolute error is smaller when using the gradient methods and
smaller block sizes compared to the Newton–Raphson method
and larger block sizes.

The ‘concentrated lateral tension’ model theoretical
strains varied between 2 × 10−5 and −1.6 × 10−3 for
εxx, 7.95 × 10−4 and −7.95 × 10−4 for εxy and 3.975 × 10−4

and −3.975 × 10−4 for εyy . The strain errors from figure 15
indicate that choosing 64 × 64 blocks yields the lowest
strain errors; however, the error values vary very little when
changing block sizes. This is mostly because the largest part
of each of the three strain fields has very little underlying

strain variation with strains generally smaller than 300 με.
The same lower limit of reliability applies also in this case,
with strains of absolute value less than 200 με presenting
errors in excess of 15%. This limit becomes much larger
or approximately 500 με for the strains located near the lateral
tension application because of the obvious large differences
between the zero- or first-order displacement models used
by the DIC algorithms and the theoretical displacement
variations. The horizontal strain results are even more affected
by strain discontinuities with the errors corresponding to
largest strain values ranging from 26% in the case of the
gradient methods and 32×32 blocks size to 82% for the robust
method with smoothing term and 64×64 blocks. It is clear that
in tests which present a very high localization of strains it is
important to keep block sizes and strain window sizes as small
as possible while ensuring that the information contained in
each suffices for accurate motion and strain estimates.

4.3. ‘DIC-based’ displacement model errors

The horizontal DIC errors from the last of the test images,
shown in figure 16, indicate that the gradient method with
a second degree Taylor expansion has the smallest errors
for blocks of size 32 × 32 and 48 × 48 pixels. The
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Figure 14. Mean error and standard deviation of the horizontal and vertical displacements for the ‘concentrated lateral tension’
displacement model in a 300 × 300 pixel area around the lateral stress application point.
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Figure 15. Mean of the absolute strain errors for the ‘concentrated lateral tension’ displacement model.

Newton–Raphson method presents the lowest horizontal errors
and standard deviations for the 64 × 64 pixel blocks and for all
block sizes in the case of the vertical displacements. The robust

methods have comparable performance with the gradient ones
for the smoother horizontal displacements and perform better
for the vertical displacements except when using 64 × 64
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Figure 16. Mean error and standard deviation of the horizontal and vertical displacements for the ‘DIC-based’ displacement model.

blocks. Errors in the 400 × 400 pixel central region of the
image presented in figure 17 indicate the same quality pattern
with gradient methods performing better at lower block sizes
and their overall quality inversely proportional to the block
size while the Newton–Raphson method benefits significantly
from the increase in block size and gives the best overall
quality at blocks over 48 × 48 pixels. Here, as in the first case
analyzed, performance advantage of the Newton–Raphson was
more apparent where the absolute displacement magnitude was
larger, namely in the case of vertical displacements.

The ‘DIC-based’ model theoretical strains varied between
4.0 × 10−3 and −2.4 × 10−3 for εxx, 1.8 × 10−3 and −3.6 ×
10−3 for εxy and 7.8×10−3 and −1.7×10−3 for εyy . Analysis
of the strain errors from figure 18 leads to similar conclusions
as in the case of the displacements. Gradient methods have
a quality advantage over both Newton–Raphson and robust
methods for the horizontal and shear strains while the latter
perform better for the larger, vertical strains. Using the
large blocks produces worse results in the case of the vertical
strains because these are highly localized in the central image
area and larger block sizes have the tendency to smooth the
estimates.

4.4. ‘Plate with hole’ model—large strain analysis

The ‘plate with hole’ displacement model is perfectly adapted
for the DIC quality analysis of large strains as well as small
strains. In order to create the artificial displacements needed
for large strain fields, a new set of parameters was used in the
model, with E = 0.1 GPa, ν = 0.5, values typical for rubber,
the radius of the hole a = 200 pixels and stresses σxx =
2 MPa, σyy = 4 MPa. The resulting displacements have
spatial variations very similar to those found in figure 2 but
with much larger displacement amplitudes, these ranging from
−4 and 4 pixels for the horizontal displacements and −21.8
to 21.8 pixels for the vertical displacements. The associated
theoretical second-order Green–Lagrange strain values varied
between 4.47 × 10−2 and −2 × 10−2 for εxx, 3.84 × 10−2 and
−3.84 × 10−2 for εxy and 9.07 × 10−2 and −1.02 × 10−2

for εyy .
In the analysis of the previous cases which referred to

small strains, it was clear that large block sizes and linear
displacement models present large errors and thus are of little
use in practical applications. In dealing with this, for the large
strain error analysis, the DIC method parameters were changed
to account for larger spatial variations of the strain fields: the
block sizes were lowered to 21 × 21, 32 × 32 and 48 × 48
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Figure 17. Mean error and standard deviation of the horizontal and vertical displacements for the ‘DIC-based’ displacement model in a
400 × 400 pixel area around the central discontinuity.
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Figure 18. Mean of the absolute strain errors for the ‘DIC-based’ displacement model.

pixels with a 7 pixel step between each two consecutive blocks
in the horizontal and vertical directions. The strain window
size was kept constant at 11 × 11 displacement locations.

The integer pixel displacements were calculated through block
matching with cross-correlation coefficient maximization, the
resulting estimates representing the initial solution for the DIC
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Figure 19. Mean of the absolute large strain errors for the ‘plate with hole’ model.

methods. The mean absolute errors presented in figure 19
present a large degree of resemblance concerning the relative
performance of the DIC algorithms although the errors are
larger. As an accuracy reference, the best results were by a
large margin given by the Newton–Raphson method with an
accuracy ranging from 150 to 500 με depending on the strain
magnitude. The vertical mean errors are larger because of large
errors in the strain field corresponding to small areas located
above and below the hole where the strains change sign within
the span of approximately 30 pixels generating very small
strain values. The advantage of the linear displacement model
and implicitly the limitations of a translational model are even
more apparent when using the 48 × 48 blocks with the mean
error for the Newton–Raphson method approximately 50%
smaller compared to the other methods. The robust methods
performed better, although not significantly, than the gradient
ones.

5. Conclusion

This paper evaluates five digital image correlation algorithms
using artificially warped ground truth images with the known
sub-pixel horizontal and vertical motion fields obtained
through both theoretical models of material behavior under
stress and using motion data from real experiments. The goals
of the evaluation were to generate speckle images that simulate
deformation processes and insert discontinuities in the motion
fields so as to provide a broader view of the advantages and
limitations of DIC algorithms while maintaining an elevated
degree of realism of the warped picture. The use of the
radial basis framework has been investigated both in creating
artificial displacements and warping real speckle images in
order to obtain the ground truth used in the evaluation process.
In the three test cases used, the Newton–Raphson method
performed best for the ‘plate with hole model’ and when large
block sizes were used. Regardless of the order of the Taylor

expansion employed, the gradient methods performed very
similar and provided accurate results when smaller blocks were
used, around areas with motion discontinuities and where the
underlying displacements and strains were very small. The
robust methods performed with mixed results depending on
the nature of the motion present. The robust estimator may
impact negatively the quality of the results especially when
motion information is highly localized; however, the methods
represent a viable DIC alternative when coupled with a good
choice of the algorithm parameters. The evaluation suggests
two parallel approaches in using DIC methods: using small
blocks with a rigid body displacement model when calculating
very small displacement or strains or larger blocks and the
Newton–Raphson method coupled with more complex motion
assumptions for larger strains.

Appendix A. Gradient method least-squares
solutions

Expressing g (x + u(x, y), y + u(x, y)) through a first- or
second-order Taylor expansion around (x, y) and assuming
a constant motion model with u(x, y) = u0 and v(x, y) = v0

yield

g(x + u0, y + v0) = g(x, y) + gx(x, y)u0 + gy(x, y)v0

(A.1)

or

g(x + u0, y + v0) = g(x, y) + gx(x, y)u0 + gy(x, y)v0

+ 1
2gxx(x, y)u2

0 + gxy(x, y)u0v0 + 1
2gyy(x, y)v2

0, (A.2)

where gx(x, y), gy(x, y), gxx(x, y), gxy(x, y) and gyy(x, y)

are the first- and second-order partial derivatives of the
displaced block g(x, y) with respect to the x and y axes.

Depending on the Taylor expansion order presented
in equation (A.1) and equation (A.2), the least-squares
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minimization of equation (1) has the closed form solutions:[
u0

v0

]

=

⎡
⎢⎢⎢⎢⎢⎣

M∑
x=1

M∑
y=1

gx(x, y)2
M∑

x=1

M∑
y=1

gx(x, y)gy(x, y)

M∑
x=1

M∑
y=1

gx(x, y)gy(x, y)

M∑
x=1

M∑
y=1

gy(x, y)2

⎤
⎥⎥⎥⎥⎥⎦

−1

·

⎡
⎢⎢⎢⎢⎢⎣

M∑
x=1

M∑
y=1

(f (x, y) − g(x, y))gx(x, y)

M∑
x=1

M∑
y=1

(f (x, y) − g(x, y))gy(x, y)

⎤
⎥⎥⎥⎥⎥⎦

(A.3)

and, according to Zhang et al [15][
u0

v0

]

=

⎡
⎢⎢⎢⎢⎢⎣

M∑
x=1

M∑
y=1

(f (x, y) − g(x, y))gxx(x, y) − gx(x, y)2

M∑
x=1

M∑
y=1

(f (x, y) − g(x, y))gxy(x, y) − gx(x, y)gy(x, y)

M∑
x=1

M∑
y=1

(f (x, y) − g(x, y))gxy(x, y) − gx(x, y)gy(x, y)

M∑
x=1

M∑
y=1

(f (x, y) − g(x, y))gyy(x, y) − gy(x, y)2

⎤
⎥⎥⎥⎥⎥⎦

−1

·

⎡
⎢⎢⎢⎢⎢⎣

M∑
x=1

M∑
y=1

(f (x, y) − g(x, y))gx(x, y)

M∑
x=1

M∑
y=1

(f (x, y) − g(x, y))gy(x, y)

⎤
⎥⎥⎥⎥⎥⎦

, (A.4)

respectively.

Appendix B. Robust method solution

The solution for the robust error function E(u0, v0) has the
general iterative form

u0 = u−
0 − ω

1

T (u0)

∂

∂u0
E(u0, v0) (B.1)

v0 = v−
0 − ω

1

T (v0)

∂

∂v0
E(u0, v0), (B.2)

where u−
0 , v−

0 are the motion estimates from the previous
iteration, 0 < ω < 2 is an over-relaxation parameter and
the terms T (u0) and T (v0) represent an upper bound of the
second derivative of E with respect to the displacements.

The values λD = 1 and λS = 100 for the data and
smoothness terms were set to perform only mild smoothing,
the Lorentzian function parameters were σD = 1√

2
, σS = 1

2

and the over-relaxation parameter ω = 1.97. Choosing
different robust parameters and smoothness term values
individually for each of the three test cases and adopting a
gradual convexity approach as in [35, 36] may improve the
quality and speed over the current choice of parameters which
instead provided a good overall compromise.

Appendix C. RBF interpolation

Considering N known data points, fi, i = 1, . . . , N, with
(xi, yi) their plane coordinates, the RBF interpolant at a certain
location (x, y) can be defined as

Y (x, y) =
N∑

i=1

λi�
(√

(x − xi)2 + (y − yi)2
)

+ p(x, y),

(C.1)

where λi are the RBF expansion coefficients, � is the chosen
radial basis function and p(x, y) is a low-order polynomial
whose presence and order are influenced by the radial basis
functions employed. For the functions used here, a first-order
polynomial p(x) = γ1x + γ2y + 1 is sufficient [24].

Solving the interpolation problem by finding RBF
parameters λi and γ1,2 is done by conditioning all the initial
data to belong to the interpolant

fi =
N−1∑
j=1

λi�
(√

(xi − xj )2 + (yi − yj )2
)

+ p(xi, yi) (C.2)

and further adding the polynomial reproduction conditions
N∑

i=1

λi = 0;
N∑

i=1

λixi = 0;
N∑

i=1

λiyi = 0. (C.3)

Equation (C.2) and equation (C.3) can be easily put into matrix
form and solved using the least-squares method, yielding the
solution⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1
...

λN

γ1

γ2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 · · · A1N x1 y1 1
...

. . .
...

...
...

...

AN1 · · · ANN xN yN 1
x1 · · · xN 0 0 0
y1 · · · yN 0 0 0
1 · · · 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f11
...

fNN

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(C.4)

where Aij = �
(√

(xi − xj )2 + (yi − yj )2
)
.
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