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a b s t r a c t

In the present study, the shape of a cruciform type specimen under biaxial loading
conditions is optimised. The basic goal is to achieve uniform biaxial failure in the centre of
the specimen and minimise undesirable phenomena, such as premature failure outside the
area of interest and non uniformities on the central strain field, caused by stress
concentrations. A numerical optimisation technique (sequential quadratic programming or
SQP) is coupled with a parametrically built finite element model (FEM) to concentrate and
initiate damage in the centre and achieve a uniform strain field by varying the geometrical
characteristics of the specimen. The outputs of the optimisation process are compared
with a commonly used cruciform type geometry.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

During their life time structures are often subjected to
multiaxial loading conditions which can cause complex
stress states, e.g. the internal pressure applied in a pressure
vessel can lead to a biaxial or triaxial stress state on the
walls of the vessel. Biaxial testing is an experimental
technique which allows the investigation of the mechanical
behaviour of materials under complex quasi-static or
fatigue loading conditions. Over the years different tech-
niques and specimens have been proposed to produce and
investigate biaxial stress states [1,2], mostly for metallic or
composite materials. These techniques may be classified
into two general categories [3]: (i) tests using a single
loading system and (ii) tests using two or more indepen-
dent loading systems. In the first category the biaxial stress
ratio depends on the specimen geometry or the loading
fixture configuration; whereas in the second category it is
specified by the applied load magnitude ratios. A versatile
technique, representative of the second category, consists
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of applying in-plane loads along two perpendicular arms of
cruciform specimens [4–14]. In order to perform biaxial
tests using this last kind of specimen, several biaxial testing
devices have been proposed [15–20].

Multiaxial testing is of great interest for the investiga-
tion of the failure behaviour of composite materials. Their
nonhomogeneous and strong anisotropic response, and the
fact that such complex experiments demand expensive and
sophisticated test equipment, can certainly justify why
these kind of test methods have not obtained the same
level of maturity as uniaxial testing. Moreover, this can
possibly explain the small capability available to evaluate
the multiaxial response of composite materials and to
validate existing failure theories. The practice of using
uniaxial test results to predict failure under multiaxial
stress states seems inadequate [21,22].

A crucial issue for a successful biaxial test is the design
of the specimen itself. An optimised cruciform specimen
proper for biaxial testing should fulfil the following
requirements: (i) maximisation of the region of strain
uniformity in the biaxially loaded zone, (ii) minimisation of
the global shear strains in the biaxially loaded test zone,
(iii) minimisation of the strain concentrations/failure
outside the test zone of interest, (iv) specimen failure in the
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Fig. 1. Damaged areas of the cruciform specimen under 90% of the total
failure load according to Digital Image Correlation Technique images.
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biaxially loaded test zone and (v) repeatable results
[7, 23–25]. It has been proven difficult to develop cruciform
specimens that simultaneously fulfil all these require-
ments, therefore, in this study a numerical tool is devel-
oped and proposed to optimise the shape of the cruciform
specimen with a focus on carbon epoxy cruciform speci-
mens with a cross ply lay up. The specific material and lay
up was selected because of the availability of numerical
calculations and experimental data, for comparison and
validation, while the developed method can be used for
different kinds of materials and lay ups by applying small
modifications in the code.

Previous studies considering failure analysis (using
Digital Image Correlation Technique (DICT) and a Finite
Element Damage Model (FEDM)) of carbon epoxy cross ply
specimens [26], tested by using a commonly used cruci-
form geometry [4], pointed out problems such as strain
concentrations and premature undesirable damage outside
the area of interest, as illustrated in Figs. 1 and 3. These
phenomena lead to a decrease in the accuracy of the
obtained failure data. This study tries to bypass these
problems by providing proper geometry modifications.
2. Numerical simulation of the biaxial test using shell
elements

In order to simulate the mechanical test, a finite element
model of the cruciform geometry was built using the
commercial software Ansys�. In order to obtain the elastic
properties and strength of the UD material, mechanical
Table 1
Elastic properties of the UD SE84 carbon lamina.

E1 [GPa] E2 [GPa] E3 [GPa] G12 [GP

Average 124.3 8.14 7.8 4.49
Standard deviation 4.4 0.1 0.12 0.07
tests were realized. Average five specimens per property
were tested using on average five specimens per property.
For the uniaxial tensile properties ISO-527-5 coupons were
used, for the uniaxial compression properties ISO-14126
and all shear properties were measured by using the Iosi-
pescu method (ASTM D5379). For generating through-
thickness (TT) data in both tension and compression the
circular-waisted block (CWB) [27] testing method was
used. In Table 1 the average values and standard deviation
of the elastic properties of the UD SE84 material can be
found. These properties together with the strength of the
lamina, see Table 2, were used as basic input for the FEM.

In Table 1, ‘123’ is the fibre coordinate system, ‘1’ is the
fibre direction, ‘2’ is the direction transverse to the fibres
and ‘3’ is the through-thickness direction (see Fig. 2).

In Table 2, XT, XC are the tensile and compressive
strengths (expressed as stresses and strains) longitudinal to
the fibres. YT, YC are the tensile and compressive strengths
transverse to the fibres and normal to the ‘13’ plane. ZT, ZC

are the tensile and compressive strengths transverse to the
fibres and normal to the ‘12’ plane. Sij (i,j¼ 1,2,3) is the
shear strength of the lamina along the different axes.

To validate the FEM results, strain distribution data of
the model are straightforwardly compared with experi-
mental full field optical strain measurements obtained by
using a Digital Image Correlation Technique (DICT). Fig. 3
shows the experimental and numerical strain results of
a cruciform specimen under biaxial loading conditions
where the load in the x-direction (horizontal) is 3 times
that in the y-direction.

Comparison of the strain contour results confirms the
good agreement between strain measurements and
numerical predictions, validating the use of the numerical
model for the optimisation process. The strain concentra-
tions outside the zone of interest (i.e. outside the central
biaxially loaded region), measured by the DICT and calcu-
lated by the FEM, emphasize the need for an improved
shape that can fulfil the predefined requirements for
a successful biaxial test.
3. Optimisation parameters and objective functions

Two different optimisation problems are solved: the first
optimises a specimen with constant arm width (specimen
(A)) which resembles the one found in [4,5] while the
second optimises a specimen with a spline corner fillet
(specimen (B)) [28]. These two specimen types are reported
from the corresponding authors as the most promising
among literature in producing accurate biaxial data and are
plotted respectively left and right in Fig. 4 (above).

For both cases, the influence of six different geometrical
parameters on the failure behaviour of the specimen was
investigated (Fig. 4 (below)). For specimen A, the width and
a] G23 [GPa] G13 [GPa] n12 n23 n13

2.44 3.93 0.32 0.505 0.34
0.21 0.1 0.02 0.005 0.025



Table 2
Strength of the UD SE84 carbon lamina expressed in stress (MPa) and strain (%) terms.

XT XC YT YC ZT ZC S12 S23 S13

Average [MPa] 2751 1180 25 162 42 165 106.9 35.21 97.87
Average [%] 2.14 1.21 0.46 2.41 0.46 2.41 2.8 1.1 2.8

Fig. 2. Fibre coordinate system 123.
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the length of the specimen, the radius of curvature of the
corner (f), the distance of the corner of the central section
to the corner of the specimen (c), the number of layers of
the central section (NLC) and the number of layers of the
arm section (NLA) were varied. For specimen B, the central
section becomes totally circular replacing parameter (c)
(the corner distance) by the radius of the central circle (r),
and parameter f (the curvature) by the position of the
central point ‘c’ of the spline curve.

Each cruciform specimen is divided into two sections:
the central part (section A), where the failure must be
concentrated and, therefore, can be of reduced thickness,
and the rest of the specimen including basically the arms
(section B). A successful biaxial test is considered to be
achieved by homogenous failure in section A. Hence,
during the post analysis of each iteration the value of the
Maximum Strain failure criterion (i.e. the percentage of the
allowable strain reached) is stored for all the elements and
layers. The maximal value of section B (xmax,B) and the
maximum value coming from the centre of section A
(xmax,A) are compared and divided, yielding a first objective
function (the failure ratio, symbolized FR) reflecting the
failure reached in both sections.

FR ¼
xmax;B

xmax;A
(1)

The minimisation of this object function can lead to an
optimised shape concerning damage initiation-concentra-
tion in the centre of the coupon. Moreover, a value smaller
than 1 corresponds to a more evaluated failure in section A
than in section B.

Another important characteristic for successful biaxial
testing is the uniformity of the strain distribution in the
biaxially loaded zone. For successful material testing, it
should be as uniform as possible. In order to calculate the
uniformity of the strain field, the strain data of the section A
are used. The first principal strain values of all the central
nodes are stored and the Coefficient of Variation (COF) of
the sample is calculated. This COF represents the hetero-
geneity of the strain field and should, therefore, also be
minimised.

COF ¼ sdð3 fieldÞ
meanð3 fieldÞ (2)

with sd() and mean() respectively, the standard deviation
and the mean value of the strain field in section A.

Finally, a weighted sum of expression (1) and (2) leads
to the ‘multiobjective’ cost function (CF) used in this study.
The minimisation of this offers an optimum cruciform
geometry considering concentration of the damage in the
central section and uniformity of its strain distribution.
Furthermore, it enables simultaneous consideration of both
objective functions with a comparable scale:
CF ¼ 1

wf
FRmin;i

FR
þ ð1�wf ÞCOFmin;i

COF
ji ¼ specimenAnspecimenB ð3Þ

In Eq. (3), FRmin,i and COFmin,i are the minimum values
that can be found when optimising damage initiation or
strain uniformity independently. A weight factor wf is used
to tune the relative importance of the two objective func-
tions (FR, COF) to the total one (CF). For this example,
a factor wf¼ 0.8 is used meaning that FR is 4 times more
important than COF. The minimum theoretically attainable
value of CF equals 1, corresponding to a specimen shape
that optimises both FR and COF to their minimum value.

In order to ensure a manufacturable solution, the
geometrical parameters are limited to the values given in
Tables 3 and 4.
4. Optimisation process

The algorithm used for the optimisation is summarized
in Fig. 5. The procedure starts by giving initial values to the
geometrical parameters. A first step computes the stress
and strain distribution in the specimen and automatically
calculates the associated objective function. As long as the
convergence criterion is not attained, the parameters are
continuously updated by the optimisation algorithm.
When two consecutive steps do not alter the objective
function by more than 0.1%, convergence is assumed and
the computation stops.

In this application, the selection of an appropriate
optimisation algorithm is essentially dictated by the high
computation time per iteration due to the FEA. It is,
therefore, opted not to use global optimisation methods
(e.g. genetic algorithm or simulated annealing) but local
optimisation methods. Moreover, the convergence rate is
increased by using algorithms based on higher order



Fig. 3. 3x, 3y and 3xy strain fields for a carbon epoxy cross ply cruciform specimen for 50% of the total failure load from DIC measurements (upper) and the finite
element model (lower).
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derivative information. Considering the type of optimisa-
tion problem (non-linear objective function with inequality
constraints), Sequential Quadratic Programming (SQP)
complies well with these fast convergence requirement.
The method allows you to closely mimic Newton’s method
Fig. 4. Investigated geometrical parameters for the shape optimisation, for A) geom
b and c points). Real specimen (above), simulation (below).
for constrained optimisation just as is done for uncon-
strained optimisation. At each major iteration, an approx-
imation is made of the Hessian of the Lagrangian function
using a quasi-Newton updating method. This is then used
to generate a Quadratic Programming (QP) sub-problem
etry with a fixed width, B) geometry with a spline corner fillet (through a,



Table 3
Boundaries of the input parameters for specimen A.

Width (mm) Length (mm) f (mm) c (mm) NLA NLC

20–80 with steps
of 1 mm

150–300 with steps
of 1 mm

4.2–24.9 steps
of 0.1 mm

2 to width/2 with steps
of 0.5 mm

4,8,12.40 4,8,12.20

Table 4
Boundaries of the input parameters for specimen B.

Width (mm) Length (mm) Radius (mm) c (mm) NLA NLC

20–80 with
steps of 1 mm

150–300 with
steps of 1 mm

1–1.2*c with
steps of 0.2 mm

20 to length/5
with steps of 0.2 mm

4,8,12.40 4,8,12.20
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whose solution is used to form a search direction for a line
search procedure. A detailed overview of SQP can be found
in [29,30]. The general method, however, is stated in [31]
and summarized here. The optimisation problem is
formulated as follows:

Minimise f ðxÞ x˛Rn (4)

Subject to hiðxÞ ¼ 0 i ¼ 1;.;m

hiðxÞ � 0 i ¼ mþ 1;.; r

Expression (4) is called the standard form [32] in which
the function f: Rn/R is referred to as the objective function
or cost function (here the strain uniformity, the failure ratio
or finally a function of both) and in which the vector
x ¼ ðx1; . ; xnÞ is called the optimisation variable or
Fig. 5. Flowchart for the geometrical parameter updating.
design vector of the problem (here the geometrical
parameters of the specimen). The functions hi: Rn/R,
i¼ 1,.,m are the equality constraints and hi: Rn/R,
i¼mþ 1,.,r are the inequality constraints (above
mentioned limits imposed for manufacturing).

The principal idea is the formulation of a QP sub-
problem based on a quadratic approximation of the
Lagrangian function

Lðx; lÞ ¼ f ðxÞ þ
Xm

i¼1

lihiðxÞ (5)

The QP sub-problem is obtained by linearizing the non-
linear constraints. This sub-problem can be solved using
any QP algorithm (explained in [31,33]). The obtained QP
sub-problem is of the following form

Minimise qðdkÞ ¼
1
2

dT
k Hkdk þ Vf ðxkÞT dk dk˛Rn (6)

Subject to VhiðxkÞT dk þ hiðxkÞ ¼ 0 i ¼ 1;.;m

VhiðxkÞT dk þ hiðxkÞ � 0 i ¼ M þ 1;.; r
with dk the search direction at iteration k and Hk the
Hessian of the Lagrangian function L at iteration k. The two
lower expressions in Eq. (6) represent the linearized
constraints. If no analytical solution is available for the
Hessian (as is the case here), it can be estimated by finite
differences, but at the cost of high computation intensity.
Therefore, the Hessian H of the Lagrangian function L is
approximated by a positive definite matrix using the BFGS-
method (Broyden-Fletcher-Goldfarb-Shanno)

Bkþ1 ¼ Bk �
BksksT

k Bk

sT
k Bksk

þ ykyT
k

yT
k sk

(7)

with yk ¼ VLkþ1�VLk and sk ¼ xkþ1�xk. As a starting point,
B0 can be set to the identity matrix I. The solution of the QP
Table 5
Converged values of the cost function (CF) starting from different initial
input values (geometries 1–5).

1 2 3 4 5

CF: Specimen A 1.1152 1.0547 1.0442 1.0462 1.3962
CF: Specimen B 1.5535 1.1843 1.1843 1.2022 1.1882



Table 6
Minimum found objective functions for the optimised specimen A and B,
and a commonly tested specimen.

Optimal
specimen A

Optimal
specimen B

Commonly tested
Geometry

FR 0.716 0.488 1.6982
COF 0.168 0.152 0.1850
CF 1.044 1.184 2.4746

Table 7
Parameter values for the two optimised specimens.

Width
(mm)

Length
(mm)

f/Radius
(mm)

c (mm) NLC NLA

Specimen A 31 222 9.4 2 4 40
Specimen B 49 296 23.6 20 4 40
Commonly tested

Geometry
25 250 6.25 3.76 8 16
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sub-problem (6) is used as search direction dk for a new
iteration

xkþ1 ¼ xk þ akdk (8)

The last step of the iteration consists of determining the
step length parameter ak in order to produce a sufficient
decrease in a merit function. The merit function used by
Han [34] and Powell [35] is used in this implementation

JðxÞ ¼ f ðxÞ þ
Xm

i¼1

ri$hiðxÞ þ
Xr

i¼mþ1

ri$maxf0;hiðxÞg (9)
Fig. 6. Normal Strain 3x distribution (0–0.5%) of the two optimised geom
with ri ¼ ri;iteratio _n kþ 1 ¼ maxfli;1=2ðri;iteratio _n k þ liÞg for
i ¼ 1,.,m as recommended by Powell [35]. This allows
positive contribution from constraints that are inactive in
the QP-solution but were recently active. In this imple-
mentation, the penalty parameter ri is initially set to

ri ¼
kVf ðxÞk
kVhiðxÞk

(10)

which ensures larger contributions to the penalty param-
eter from constraints with smaller gradients, which could
be the case for active constraints at the solution point.

This SQP method is implemented as such in the Matlab�

optimisation toolbox and detailed information can be
etries B (Bi detail) and A, and for the commonly tested case (C).
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found in [31]. This method allows fast convergence towards
a feasible local minimum but does not necessarily guar-
antee to end in the global minimum. Therefore, the opti-
misation algorithm is started from different initial points
(i.e. input values that correspond to different initial spec-
imen geometries). Table 5 gives an example of the obtained
objective function (CF), starting from five different spec-
imen geometries. The fact that the results are showing
convergence towards the same minimum indicates the
high possibility that the global minimum is found.
5. Results and discussion

The optimisation of the geometry was performed for
the equibiaxial loading case (load ratio 1/1) and by using
the total cost function (CF). The significant decrease in the
objective function (FR) (57.8% for specimen A and 71.2% for
specimen B) in comparison with the commonly used tested
geometry, demonstrates an important increase in damage
initiation inside section A. An improvement in the central
strain distribution is also achieved when comparing the
COF values (9.2% for specimen A and 17.8% for specimen B).
Furthermore, when comparing the two optimum geome-
tries found, for the two individual objective functions (FR
and COF), specimen B represents a better solution, as it
achieves a lower failure ratio (FR) and uniformity value
(COF), see Table 6.

Table 7 lists the geometrical parameter values for both
optimised solutions by using the (CF) objective function
together with the values of the commonly tested geometry.

In order to better visualize the results, the output of the
strain distribution in the x-direction (3x) is also presented in
Fig. 6 for three cruciform geometries, the optimum speci-
mens A, B and the commonly used tested geometry. For the
two optimised geometries, the maximum strain value is
calculated in the central section while for the third geom-
etry on the corners of the specimen, proving that an
improvement has been achieved.
6. Conclusions

A numerical optimisation methodology is proposed in
order to achieve higher quality biaxial tests. By modifying
the specimen’s geometry, one can augment the strain
uniformity in the biaxially stressed region and/or concen-
trate failure in this same region.

The optimisation procedure is based on the analysis of
the specimen by a (shell) finite element model, while the
geometry optimisation and updating is performed by
Sequential Quadratic Programming.

Two different specimens were compared: a cruciform
with constant arm width and one with a spline corner fillet.
It is found that the latter enables to achieve higher damage
concentration in the central section. Furthermore, both
optimum solutions show higher strain uniformity in that
region than the commonly tested geometry.

The user-friendly implementation allows tuning the
relative importance accorded to damage initiation
compared to strain uniformity. Moreover, it enables
extension for further analysis, for example, shape
optimisation considering different materials, stacking
sequences or objective functions.
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