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a b s t r a c t

The current study discusses the importance of sufficiently detailed finite element models
in the understanding of failure mechanisms in biaxially loaded cruciform specimens. It is
shown that the development of two-dimensional models can only be reliable outside the
region of geometrical discontinuities such as the fillet corners and the milled centre zone.
A comparison with experimentally obtained surface strains, by means of the digital image
correlation technique, showed a large mismatch in these regions. However, a more
detailed three-dimensional approach proved that this mismatch in strain values between
the numerical and experimental results could only be due to a miscorrelation in the digital
image correlation images. This conclusion revealed the existence of a crack at the transi-
tion zone between the milled and un-milled area, which could only be found due to the
more detailed approach of the three-dimensional finite element model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Material characterization is in general not an easy task,
especially so in the case of composite materials.
Researchers have tried for many years to develop consti-
tutive relations and failure criteria to make more wide-
spread use of these materials in different industrial sectors
possible. Unfortunately, the current practice of using
uniaxial tests as a basis for failure prediction of these
inhomogeneous and anisotropic materials under multi-
axial stress states has proven to be insufficient. Therefore,
biaxial and multiaxial tests appeared necessary to improve
our understanding in the mechanical behavior of these
complex materials. During recent decades, many different
elamkanf@gmail.com
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test set-ups have been used to produce biaxial stress states:
anticlastic bending tests of rhomboidal composite plates
[1–5], thin-walled tubes subjected to a combination of axial
loading, torsion and internal/external pressure [6–8] and
cruciform specimens under in-plane biaxial loading [9–13]
are just a few from a wide variety of testing techniques.
Although in theory these tests should give a significant
improvement of our knowledge in this matter, practically it
was found that it is not an easy task to perform them.
Conditions such as the start of failure being in the biaxially
loaded test zone or the capability to perform various biaxial
stress/strain ratios, and also the requirement that a uniform
strain distribution is obtained in the biaxially loaded zone,
complicate the achievement of reliable results. To over-
come these problems, the development of numerical
models can significantly improve our understanding in
many of these difficulties. However, due to complex
material behavior, large differences in numerical results
can be obtained depending on the chosen level of
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Fig. 2. Radii at the fillet corner and the milled zone.
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modeling. In this regard, a comparison between a two-
dimensional and a full three-dimensional finite element
model of a biaxially loaded cruciform specimen is pre-
sented. Besides the similarities found between these two
approaches, also the most important shortcomings are
discussed. Moreover, a validation of the numerically
obtained surface strains by means of the digital image
correlation technique is also shown.

2. Cruciform geometry

The present geometry discussed here has been devel-
oped in the European Optimat Blades project [14] where
a broad study was performed on the construction of rotor
blades used in the wind turbine industry. The material
investigated in this project was a glass fibre reinforced
plastic (GFRP) manufactured by LM Glasfiber using RTM
technology. The [(�45�/0�)4/�45�] stacking sequence of
this material (Fig. 1), with the [0�] layers aligned along the
x-direction of the global coordinate system in Fig. 2, is
balanced due to the internal symmetry of the [�45�] plies.
The dimensions of the specimen are depicted in the right
part of Fig. 1. The arms have a width of 25 mm and a total
length of 250 mm in the two directions. The thickness of
the [0�] layers is 0.88 mm, whereas the [þ45�] and [�45�]
layers have an equal thickness of 0.305 mm. As one can
observe in Fig. 2, each of the four corners has been cut out
with two rounding radii: an inner radius of 25 mm and
a outer radius, nearer to the centre, of 12.5 mm. The
intention of these cut-outs lies in the prevention of a direct
transfer of loads from the horizontal arms to the vertical
ones due to the dominant presence of [�45�] layers in the
stacking sequence. Failing to meet this requirement will
lead to a high concentration of shear stresses in the corner
zones, ending up in premature failure. A second type of
discontinuity can be found in the centre area of the lami-
nate where one group of [�45�/0�] at each side of the
specimen, is milled away. This results in a gradual decrease
of the total thickness of 6.57 mm in the arms (zone A) to
a thickness of 3.59 mm in the central area (zone B) along
Fig. 1. Stacking sequence (left) and
a 15� skew edge with the horizontal (Figs. 1 and 2). This
reduction in thickness appears to be necessary to prevent
premature breakage in the arms. This can be understood
from the fact that the centre zone has a greater capacity to
endure a larger stress state because of its biaxial strength
compared with that of the arms.

One of the disadvantages of this complex geometry is
that the relation between the externally applied loads in
the arms of the cruciform specimen and the resulting stress
field in the centre of the specimen cannot be determined in
an analytical way. Even the use of experimental measuring
techniques, such as strain gauges or extensometers, is not
sufficient because of the averaged value of the deformation
along their gauge length. Therefore, the digital image
correlation technique (DICT) is used as a more precise
experimental method to measure the surface strain distri-
bution of the biaxially loaded centre.
3. Digital image correlation

Optical techniques such as moiré interferometry [15],
holography [16] and speckle interferometry [17] have
cruciform dimensions (right).



Fig. 3. Strains 3xx (a), 3yy (b) and 3xy (c) on the surface of a biaxially loaded specimen obtained with the DICT. Biaxial Load at 80% of the ultimate load.

Table 1
Material characteristics for glass fibre reinforced epoxy.

E11 [GPa] 39.10
E22 [GPa] 14.44
E33 [GPa] 14.44
n12 [–] 0.294
n13 [–] 0.294
n23 [–] 0.294
G12 [GPa] 5.39
G13 [GPa] 5.39
G23 [GPa] 5.39
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become increasingly important in measuring displace-
ments and displacement gradients. Also, the digital image
correlation technique has attracted the necessary attention
of many researchers. Especially, its direct sensing capability
and the exclusion of any laborious and time-consuming
fringe pattern processing made it a very attractive method
in comparison with the ones mentioned above. In the
current paper, this non-contacting optical method will be
used for the full field measuring of strains. The essence of
this technique lies in the comparison of surface images
taken at different loading steps. After application of
a random speckle pattern onto the surface of the cruciform,
a charge couple device camera captures images from the
area of interest in the un-deformed and deformed states.
The gathered high resolution images are digitized and
a correlation algorithm is then employed to find the sub-
pixel displacements between successive pictures. Once
these deformations are obtained, the spatial derivative is
applied to calculate the surface strains.
In Fig. 3a–c, the strains 3xx, 3yy and 3xy are respectively
shown along the two orthogonal axes as an example of this
method. It can be clearly seen that the accuracy of the
results depends on the quality of the speckle pattern. In
the zones where the surface treatment has a low quality, i.e.
the speckle pattern is disturbed by large speckles, no
correlation can be found between the points which results



Fig. 4. Applied loads and boundary conditions to the 2D model.
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in ‘‘dead pixel values’’ (left arm of Fig. 3a and b). During the
experiments, it appeared that only trial and error attempts
can provide the necessary experience to obtain sufficiently
accurate results. One can also observe on Fig. 3a and b that
the border regions remain totally uncorrelated and, there-
fore, no strains are visible in those zones. Though these
regions remain unknown with the DIC technique, it will be
shown in the next paragraphs by application of the finite
element method that the stresses and strains in these
borders reach very high values and, therefore, play an
important role in understanding the failure mechanisms. At
this moment we will try to focus on the area of the cruci-
form where reliable correlations are obtained in order to
derive the strain fields.

Throughout this study, the biaxial load ratio is main-
tained at 3.85, leading to a final failure of the specimen at
average load values of 46.2 kN in the x-direction and 12 kN
in the y-direction. Regardless of the fact that a uniaxial (in
the x- or the y-direction) or a biaxial load is applied, the
horizontal axis is always the direction of the highest load.

4. Finite element model

The finite element method (FEM) is employed in this
paper as a detailed method for the study of the strain
distribution of the cruciform. In a first stage, a simplified
two-dimensional model will enable us to have a prelimi-
nary comparison with the surface strain fields obtained by
the digital image correlation technique. Also, a more
accurate 3D numerical model has been developed to help
us understand how the loads and strains are distributed
over the central area. Moreover, this detailed approach will
also highlight the shortcomings and the usefulness of the
two-dimensional model leading to the acceptance or denial
of the computationally less expensive 2D models. For this
purpose, the commercial FEM package ABAQUSTM was
used.
The 2D and the 3D numerical models are built up with
the same geometry, stacking sequence, boundary condi-
tions and material characteristics (Table 1). In the case of
the 2D shell model, the lamina stresses for the composite
cruciform subjected to a biaxial in-plane force are deter-
mined by using the classical lamination theory where
a homogenization of the material parameters is employed.
This implies that although no physical layers are modeled,
the contribution of each layer is still taken into account in
the global stiffness matrix. Therefore, it is made possible to
obtain, besides the averaged stresses and strains for the
entire model, also the results in each individual layer.
However, the fact that the inter-laminar stresses and the
through thickness stresses in the layers are themselves
neglected, is a major drawback of this modeling technique.

The boundary conditions used in this model are depic-
ted in Fig. 4 where the displacements are locked in specific
directions. At the left edge of the horizontal arm, no
displacement in the x-direction is accepted, whereas the
transverse cross section/movement is allowed to deform
freely. A similar condition is applied at the lower edge of
the vertical arm: the displacement in the y-direction is
fixed whereas the one in the x-direction is allowed.
Furthermore, the four ends of the arms are also prevented
from moving in the z-direction. The loads are also shown in
Fig. 4. It is obvious that the results obtained by use of this
2D formulation can only be the in-plane components of the
full 3D stress and strain tensors. For the three-dimensional
model, each layer in the composite is modeled with solid
elements as an independent layer which is constrained
with a tie to its surrounding layers.

4.1. Two-dimensional model

Before trying to simulate the more complex 3D model,
a reproduction of DIC images with a two-dimensional
model is desirable to prove the feasibility of the finite
element method. In this model, the largest edge load in the
x-direction has a magnitude of 1848 N/mm which corre-
sponds to the 46.2 kN mentioned above (Fx in Fig. 4),
whereas the load in the y-direction is a factor 3.85 lower.
For the discretization, two-dimensional S4R shell elements
with 4 degrees of freedom and with the reduced integra-
tion scheme have been chosen. For completeness, it also
mentioned that the skew edges of the milled zone are
approximated by the use of cylindrical cut-outs which
bound the milled zone with vertical edges. The outcome of
the calculations can be found in Fig. 5a–c where, respec-
tively, the strains 3xx, 3yy and gxy are shown in the global
coordinate system. These figures can be compared with
those in Fig. 3. One has to give attention to the shear strains,
because they are expressed in the DIC method as 3xy,
whereas in the finite element model the engineering
strains gxy ¼ 23xy are used. From Fig. 5b and c, it can be
clearly seen that the strains 3yy and gxy/2 agree very well
with the corresponding ones obtained with DIC technique
(Fig. 3b and c). However, for the 3xx strains a large difference
can be found between Figs. 3a and 5a, where a maximum
value of 3% is observed in the biaxial zone with the
experimental method, whereas the FEM method only
predicts a maximum 1.3% strain value in that region. This



Fig. 5. Strains 3xx (a), 3yy (b) and gxy (c) in the global coordinate system for the 2D model. Biaxial applied load is taken at 80% of the ultimate load.

E. Lamkanfi et al. / Polymer Testing 29 (2010) 7–13 11
mismatch can be explained by taking the simplifications of
the two-dimensional model into account as well as the
approximate modeling of the milled zone. The three-
dimensional model has to solve these inadequacies.

4.2. Three-dimensional model

For the three-dimensional situation, the same simula-
tion as the two-dimensional one was conducted with
regard to the lay-up, loads and boundary conditions. For
the type of elements, the 8 node brick continuum elements
with the reduced integration scheme have been consid-
ered. The results can be found in Fig. 6a–c. It appears that
the surface strains are corresponding fairly well with the
2D ones, especially in the arms of the specimen. This
observation justifies the shortening of the arms which
leads to a smaller and computationally more efficient
model in the following paragraphs. Also, the results from
the layers different from the surface ones correspond very
well with those of the 2D model. This is can be seen for
example in Fig. 7a where the 3xx strains are depicted in the
first un-milled [þ45�] layer in the 2D model and in Fig. 7b
for the corresponding results in the 3D model. However,
a closer look at the milled zone in Fig. 8a reveals an
anomaly for this cross-shaped specimen. Although the
digital image correlation technique and the finite element
method capture the same 3xx strain pattern in the milled
zone, the magnitudes remain much higher (3%) in this area
for the DIC method (Fig. 3a) compared with those found in
the numerical simulation of Fig. 6a (1.318%), particularly at
the transition zone between the skew edges and the milled
area. In this zone, these strain intensities 3xx exhibit
a specific ‘‘half moon’’ pattern, which is given the name
‘‘half moon’’ due to the shape of the intensity zone. More-
over, when a closer look is taken at the DIC images, a crack
is observed in this region (Fig. 8) which is responsible for



Fig. 6. Strains 3xx (a), 3yy (b) and 3xy (c) in the global coordinate system for the 3D model. Biaxial applied load is taken at 80% of the ultimate load.

Fig. 7. Strain 3xx in the first un-milled [þ45�] layer for the 2D model (a) and the 3D model (b).



Fig. 8. Cracks initiated at the interface between the skew edges and the flat
zone of the milled area.
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a miscorrelation in the speckle pattern. As a result, the DIC
method bridges this geometrical discontinuity in a numer-
ical way by transforming the large displacements into high
strains values. When these results are then compared with
the linear elastic ones coming from the finite element
model, a mismatch is, therefore, found due to the inability
of the linear model to capture any discontinuity.
5. Conclusions

In this study, a mixed experimental/numerical
approach, based on the finite element method and the
digital image correlation technique, is presented to high-
light the advantage of three-dimensional finite element
models in comparison with two-dimensional ones in the
investigation of biaxially loaded specimens. Despite the
good results in and outside the central milled region for
the two-dimensional model, a large difference remains in
the vicinity of the geometrical discontinuities. Imple-
mentation of a three-dimensional model revealed that the
experimentally obtained results were incorrect due to the
initiation of cracks at the transition zone of these
geometrical irregularities. This shows that the influence of
discontinuities, such as the milled zone and the fillet
corners, on the strain distribution can only be captured by
more detailed three-dimensional models, whereas two-
dimensional models are only reliable outside these
regions.
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